6533b7d8fe1ef96bd1269f8c

RESEARCH PRODUCT

Melting the Superconducting State in the Electron Doped Cuprate Pr$_{1.85}% $Ce$_{0.15}$CuO$_{4-\delta}$ with Intense near-infrared and Terahertz Pulses

M. BeckM. KlammerI. RousseauM. ObergfellP. LeidererM. HelmV. V. KabanovI. DiamantA. RabinowiczY. DaganJ. Demsar

subject

Condensed Matter::Quantum GasesCondensed Matter - Strongly Correlated ElectronsCondensed Matter::SuperconductivityCondensed Matter - SuperconductivityPhysics::Optics

description

We studied the superconducting (SC) state depletion process in an electron doped cuprate Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-\delta}$ by pumping with near-infrared (NIR) and narrow-band THz pulses. When pumping with THz pulses tuned just above the SC gap, we find the absorbed energy density required to deplete superconductivity, $A_{dep}$, matches the thermodynamic condensation energy. Contrary, by NIR pumping $A_{dep}$ is an order of magnitude higher, despite the fact that the SC gap is much smaller than the energy of relevant bosonic excitations. The result implies that only a small subset of bosons contribute to pairing.

10.1103/physrevb.95.085106http://arxiv.org/abs/1603.04155