0000000000314912
AUTHOR
P. Leiderer
Melting the Superconducting State in the Electron Doped Cuprate Pr$_{1.85}% $Ce$_{0.15}$CuO$_{4-\delta}$ with Intense near-infrared and Terahertz Pulses
We studied the superconducting (SC) state depletion process in an electron doped cuprate Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-\delta}$ by pumping with near-infrared (NIR) and narrow-band THz pulses. When pumping with THz pulses tuned just above the SC gap, we find the absorbed energy density required to deplete superconductivity, $A_{dep}$, matches the thermodynamic condensation energy. Contrary, by NIR pumping $A_{dep}$ is an order of magnitude higher, despite the fact that the SC gap is much smaller than the energy of relevant bosonic excitations. The result implies that only a small subset of bosons contribute to pairing.
Laser assisted particle removal from Silicon wafers
We have studied the removal of submicrometer particles from silicon wafers by the steam laser cleaning (SLC) and dry laser cleaning (DLC) processes. These processes are currently being investigated as new promising cleaning technologies for complementing traditional methods in industrial applications. For SLC a thin liquid layer (e.g. a water-alcohol mixture) is condensed onto the substrate, and is subsequently evaporated by irradiating the surface with a short laser pulse. The DLC process, on the other hand, relies only on the laser pulse, without application of a vapor jet. Using well-characterized monodisperse polystyrene and silica particles as well as irregularly shaped alumina particl…