Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materialsGe2Sb2Te5and GeTe
Phase-change materials are of immense importance for optical recording and computer memory, but the structure of the amorphous phases and the nature of the phase transition in the nanoscale bits pose continuing challenges. Massively parallel density functional simulations have been used to characterize the amorphous structure of the prototype materials ${\mathrm{Ge}}_{2}{\mathrm{Sb}}_{2}{\mathrm{Te}}_{5}$ and GeTe. In both, there is long-ranged order among Te atoms and the crucial structural motif is a four-membered ring with alternating atoms of types $A$ (Ge and Sb) and $B$ (Te), an ``$ABAB$ square.'' The rapid amorphous-to-crystalline phase change is a reorientation of disordered $ABAB$ …
Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change materialGe2Sb2Te5
Phase change materials involve the rapid and reversible transition between nanoscale amorphous $(a\text{\ensuremath{-}})$ and crystalline $(c\text{\ensuremath{-}})$ spots in a polycrystalline film and play major roles in the multimedia world, including nonvolatile computer memory. The materials of choice are alloys of Ge, Sb, and Te, e.g., ${\text{Ge}}_{2}{\text{Sb}}_{2}{\text{Te}}_{5}$ (GST) in digital versatile disk--random access memory. There has been much speculation about the structure of $a\text{\ensuremath{-}}$ GST, but no model has yet received general acceptance. Here we optimize the structure by combining the results of density-functional calculations with high-energy x-ray diffr…
Structure and dynamics in amorphous tellurium and Te-n clusters: A density functional study
Density functional/molecular dynamics simulations have been performed on amorphous tellurium (a melt-quenched sample of 343 atoms at 300 K) and on Te clusters with up to 16 atoms. The former extend our calculations on liquid Te at 560, 625, 722, and 970 K [Phys. Rev. B 81, 094202 (2010)]. We discuss trends in structures (including those of other group-16 elements), electronic densities of states, and vibration frequencies. Chain structures are common in S and Se, but the chains in amorphous Te are short, and branching sites with threefold-coordinated atoms are common. The energy difference between two- and threefold local coordination depends sensitively on the exchange-correlation function…
Structure and dynamics in liquid bismuth and Bin clusters: A density functional study
Density functional/molecular dynamics simulations with more than 500 atoms have been performed on liquid bismuth at 573, 773, 923, and 1023 K and on neutral Bi clusters with up to 14 atoms. There are similar structural patterns (coordination numbers, bond angles, and ring patterns) in the liquid and the clusters, with significant differences from the rhombohedral crystalline form. We study the details of the structure (structure factor, pair, and cavity distribution functions) and dynamical properties (vibration frequencies, diffusion constants, power spectra), and compare with experimental results where available. While the three short covalent bonds typical to pnictogens are characteristi…
Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study
Early stages of nucleus-driven crystallization of the prototype phase change material Ge${}_{2}$Sb${}_{2}$Te${}_{5}$ have been studied by density functional/molecular dynamics simulations for amorphous samples (460 and 648 atoms) at 500, 600, and 700 K. All systems assumed a fixed cubic seed of 58 atoms and 6 vacancies. Crystallization occurs within 600 ps for the 460-atom system at 600 and 700 K, and signs of crystallization (nucleus growth, percolation) are present in the others. Crystallization is accompanied by an increase in the number of ``$ABAB$ squares'' ($A$: Ge, Sb, $B$: Te), and atoms of all elements move significantly. There is no evidence of cavity movement to the crystal-glass…
Structure of amorphousGe8Sb2Te11:GeTe-Sb2Te3alloys and optical storage
The amorphous structure of ${\text{Ge}}_{8}{\text{Sb}}_{2}{\text{Te}}_{11}$, an alloy used in the Blu-ray Disc, the de facto successor to digital versatile disk (DVD) optical storage, has been characterized by large-scale (630 atoms, 0.4 ns) density-functional/molecular-dynamics simulations using the new PBEsol approximation for the exchange-correlation energy functional. The geometry and electronic structure agree well with available x-ray diffraction data and photoelectron measurements. The total coordination numbers are Ge: 4.0, Sb: 3.7, and Te: 2.9, and the Ge-Ge partial coordination number is 0.7. Most atoms (particularly Sb) prefer octahedral coordination but 42% of Ge atoms are ``tet…
Density variations in liquid tellurium: Roles of rings, chains and cavities
Liquid tellurium has been studied by density-functional/molecular-dynamics simulations at 560, 625, 722, and 970 K and by high-energy x-ray diffraction (HEXRD) at 763 K and 973 K. The HEXRD measurements agree very well with earlier neutron-scattering data of Menelle et al. The density maximum near the melting point (722 K) reflects the competition between twofold and threefold local coordination, which results in chain formation and changed ring statistics at lower $T$, and the variation with $T$ of the volume of cavities ($26--35\text{ }\mathrm{%}$ of the total). A higher-order gradient expansion of the exchange-correlation functional is needed to describe structural details. Changes in th…
Comment on “Formation of Large Voids in the Amorphous Phase-Change MemoryGe2Sb2Te5Alloy”
A Comment on the Letter by Zhimei Sun, Jian Zhou, Andreas Blomqvist, Borje Johansson, and Rajeev Ahuja, Phys. Rev. Lett. 102, 075504 (2009). The authors of the Letter offer a Reply. (See also preceding Comment and Reply in this issue.)
Amorphous Ge15Te85: density functional, high-energy x-ray and neutron diffraction study
The structure and electronic properties of amorphous Ge15Te85 have been studied by combining density functional (DF) simulations with high-energy x-ray and neutron diffraction measurements. Three models with 560 atoms have been constructed using reverse Monte Carlo methods constrained to (1) agree with the experimental structure factors S(Q), and have (2) energies close to the DF minimum and (3) a semiconducting band structure. The best structure is based on the melt-quenched DF structure and has a small number of Ge–Ge bonds. It shows interlocking networks of Te and GeTe with a significant fraction (22–24%) of voids (cavities). Ge occurs with both tetrahedral and 3 + 3 defective octahedral…
From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials
Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GS…
Density functional study of amorphous, liquid and crystalline Ge(2)Sb(2)Te(5): homopolar bonds and/or AB alternation?
The amorphous, liquid and crystalline phases of the phase change material Ge(2)Sb(2)Te(5) (GST) have been studied by means of density functional/molecular dynamics simulations. The large sample (460 atoms and 52 vacancies in the unit cell) and long simulations (hundreds of picoseconds) provide much new information. Here we extend our original analysis (2007 Phys. Rev. B 76 235201) in important ways: partial coordination numbers and radial distribution functions, bond angle distributions, new local order parameters, vibration frequencies, and the charges on atoms and vacancies. The valence band densities of states in amorphous and crystalline GST are compared with ones from x-ray photoemissi…
Polymorphism in phase-change materials: melt-quenched and as-deposited amorphous structures in Ge2Sb2Te5from density functional calculations
The as-deposited (AD) amorphous structure of the prototype phase change material Ge${}_{2}$Sb${}_{2}$Te${}_{5}$ (GST-225) has been studied by density functional calculations for a 648-atom sample generated by computer-aided deposition at 300 K. The AD sample differs from a melt-quenched (MQ) sample in essential ways: (1) Ge atoms are predominantly tetrahedrally coordinated, and (2) homopolar and Ge-Sb bonds are more common and reduce the number of $\mathit{ABAB}$ squares ($A=\mathrm{Ge}$, Sb; $B=\mathrm{Te}$), the characteristic building blocks of the material. The first observation resolves the contradiction between measured (EXAFS) and calculated Ge-Te bond lengths, and the latter explain…
Binary alloys of Ge and Te: order, voids, and the eutectic composition
The liquid and amorphous structures of ${\mathrm{Ge}}_{0.15}{\mathrm{Te}}_{0.85}$ and GeTe alloys are characterized using combined density functional/molecular dynamics simulations. Te is threefold coordinated, in contrast with predictions of the ``8-$N$ rule,'' and Ge atoms (fourfold coordinated) show octahedral and tetrahedral bonding angles. Cubic local environment occurs in both materials, and GeTe shows a pronounced alternation of atomic types. Tetrahedral Ge coordination is more common in the eutectic ${\mathrm{Ge}}_{0.15}{\mathrm{Te}}_{0.85}$, which comprises corner- and edge-sharing ${\mathrm{GeTe}}_{4}$ units surrounded by Te. There is no Te segregation, and the material resembles …
Density functional simulations of structure and polymorphism in Ga/Sb films.
Thin films of gallium/antimony alloys are promising candidates for phase change memories requiring rapid crystallization at high crystallization temperatures. Prominent examples are the stoichiometric form GaSb and alloys near the eutectic composition GaSb(7), but little is known about their amorphous structures or the differences between the 'as-deposited' (AD) and 'melt-quenched' (MQ) forms. We have generated these structures using 528-atom density functional/molecular dynamics simulations, and we have studied in detail and compared structural parameters (pair distribution functions, structure factors, coordination numbers, bond and ring size distributions) and electronic properties (dens…