0000000000315648
AUTHOR
Dave A. May
Quantifying the impact of mechanical layering and underthrusting on the dynamics of the modern India-Asia collisional system with 3-D numerical models
The impact of mechanical layering and the strength of the Indian lower crust on the dynamics of the modern India-Asia collisional system are studied using 3-D thermomechanical modeling. The model includes an Indian oceanic domain, Indian continental domain, and an Asian continental domain. Each domain consists of four layers: upper/lower crust, and upper/lower lithospheric mantle. The Tarim and Sichuan Basins are modeled as effectively rigid blocks and the Quetta-Chaman and Sagaing strike-slip faults as vertical weak zones. The geometry, densities, and viscosities are constrained by geophysical data sets (CRUST2.0, gravity, and seismology). Both static (no horizontal movement of model bound…
Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust
Many unresolved questions in geodynamics revolve around the physical behaviour of the two-phase system of a silicate melt percolating through and interacting with a tectonically deforming host rock. Well-accepted equations exist to describe the physics of such systems and several previous studies have successfully implemented various forms of these equations in numerical models. To date, most such models of magma dynamics have focused on mantle flow problems and therefore employed viscous creep rheologies suitable to describe the deformation properties of mantle rock under high temperatures and pressures. However, the use of such rheologies is not appropriate to model melt extraction above …
Influences of surface processes on fold growth during 3-D detachment folding
In order to understand the interactions between surface processes and multilayer folding systems, we here present fully coupled three-dimensional numerical simulations. The mechanical model represents a sedimentary cover with internal weak layers, detached over a much weaker basal layer representing salt or evaporites. Applying compression in one direction results in a series of three-dimensional buckle folds, of which the topographic expression consists of anticlines and synclines. This topography is modified through time by mass redistribution, which is achieved by a combination of fluvial and hillslope erosion, as well as deposition, and which can in return influence the subsequent defor…
A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method
SUMMARY Calculating surface topography in geodynamic models is a common numerical problem. Besides other approaches, the so-called ‘sticky air’ approach has gained interest as a free-surface proxy at the top boundary. The often used free slip condition is thereby vertically extended by introducing a low density, low viscosityfluid layer. This allows the air/crust interface to behave in a similar manner to a true free surface. We present here a theoretical analysis that provides the physical conditions under which the sticky air approach is a valid approximation of a true free surface. Two cases are evaluated that characterize the evolution of topography on different timescales: (1) isostati…