6533b823fe1ef96bd127e120

RESEARCH PRODUCT

Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust

Boris J. P. KausBoris KausTobias KellerDave A. May

subject

010504 meteorology & atmospheric sciencescrust and lithosphere; Pluton emplacement [Fracture and flow; Dynamics of lithosphere and mantle; Mechanics theory and modelling; Rheology]CrustGeophysicsMagma chamberDiapirGeodynamics010502 geochemistry & geophysics01 natural sciencesMantle (geology)TectonicsGeophysicsShear (geology)13. Climate actionGeochemistry and PetrologyLithosphereGeology0105 earth and related environmental sciences

description

Many unresolved questions in geodynamics revolve around the physical behaviour of the two-phase system of a silicate melt percolating through and interacting with a tectonically deforming host rock. Well-accepted equations exist to describe the physics of such systems and several previous studies have successfully implemented various forms of these equations in numerical models. To date, most such models of magma dynamics have focused on mantle flow problems and therefore employed viscous creep rheologies suitable to describe the deformation properties of mantle rock under high temperatures and pressures. However, the use of such rheologies is not appropriate to model melt extraction above the lithosphere–asthenosphere boundary, where the mode of deformation of the host rock transitions from ductile viscous to brittle elasto-plastic. Here, we introduce a novel approach to numerically model magma dynamics, focusing on the conceptual study of melt extraction from an asthenospheric source of partial melt through the overlying lithosphere and crust. To this end, we introduce an adapted set of two-phase flow equations, coupled to a visco-elasto-plastic rheology for both shear and compaction deformation of the host rock in interaction with the melt phase. We describe in detail how to implement this physical model into a finite-element code, and then proceed to evaluate the functionality and potential of this methodology using a series of conceptual model setups, which demonstrate the modes of melt extraction occurring around the rheological transition from ductile to brittle host rocks. The models suggest that three principal regimes of melt extraction emerge: viscous diapirism, viscoplastic decompaction channels and elasto-plastic dyking. Thus, our model of magma dynamics interacting with active tectonics of the lithosphere and crust provides a novel framework to further investigate magmato-tectonic processes such as the formation and geometry of magma chambers and conduits, as well as the emplacement of plutonic rock complexes.

https://doi.org/10.1093/gji/ggt306