0000000000315715

AUTHOR

J. Dvorak

showing 13 related works from this author

Cross section limits for theCm248(Mg25,4n−5n)Hs268,269reactions

2009

We report on an attempt to produce and detect $^{268}\mathrm{Hs}$ and $^{269}\mathrm{Hs}$ in the nuclear fusion reaction $^{25}\mathrm{Mg}+^{248}\mathrm{Cm}$ using the gas phase chemistry apparatus COMPACT. No decay chains attributable to the decay of hassium isotopes were observed during the course of this experiment. From the nonobservation of $^{269}\mathrm{Hs}$ we derive a cross section limit of 0.4 pb (63% confidence limit) for the reaction $^{248}\mathrm{Cm}(^{25}\mathrm{Mg},4n)^{269}\mathrm{Hs}$ at a center-of-target beam energy of 140 MeV. The evaluated cross section limit for the $^{248}\mathrm{Cm}(^{25}\mathrm{Mg},5n)^{268}\mathrm{Hs}$ reaction depends on the assumed half-life of …

PhysicsNuclear and High Energy PhysicsCross section (physics)chemistryFissionAnalytical chemistrychemistry.chemical_elementNuclear fusionAlpha decayBeam energyHassiumGas phasePhysical Review C
researchProduct

Production and Decay of Element 114: High Cross Sections and the New NucleusHs277

2010

The fusion-evaporation reaction Pu-244(Ca-48, 3-4n)(288,289)114 was studied at the new gas-filled recoil separator TASCA. Thirteen correlated decay chains were observed and assigned to the production and decay of (288, 289)114. At a compound nucleus excitation energy of E* = 39.8-43.9 MeV, the 4n evaporation channel cross section was 9.8(-3.1)(+3.9) pb. At E* = 36.1-39.5 MeV, that of the 3n evaporation channel was 8.0-(+7.4)(4.5) pb. In one of the 3n evaporation channel decay chains, a previously unobserved alpha branch in (281)Ds was observed ( probability to be of random origin from background: 0.1%). This alpha decay populated the new nucleus (277)Hs, which decayed by spontaneous fission…

Nuclear reactionNuclear physicsCluster decayIsotopeFissionGeneral Physics and AstronomyDecay chainAlpha decayAtomic physicsRadioactive decaySpontaneous fissionPhysical Review Letters
researchProduct

Superheavy element flerovium (element 114) is a volatile metal.

2014

The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Expe…

Physicsgas chemistryValence (chemistry)ta114Electron shellchemistry.chemical_elementelement 114Inorganic ChemistryFleroviumsuperheavy elementsPhysisorptionchemistryAtomic orbitalChemical physicsSubatomic PhysicsAtomic numberPhysical and Theoretical ChemistryAtomic physicsRelativistic quantum chemistryCoperniciumInorganic chemistry
researchProduct

IRiS—Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new Inelastic Reaction Isotope Separator

2011

Abstract A dedicated Inelastic Reaction Isotope Separator (IRiS) for multi-nucleon transfer products will be designed and installed at GSI. Research at IRiS will focus on the investigation of new neutron-rich isotopes of the heaviest elements, study of which will advance various research fields, such as nuclear chemistry, nuclear and atomic physics, as well as nuclear astrophysics. The scientific motivation for this project and the alternative design options for the separator and its main components are discussed.

PhysicsNuclear physicsNuclear and High Energy PhysicsIsotopeNuclear TheoryNuclear astrophysicsPhysics::Accelerator PhysicsSeparator (oil production)IRIS (biosensor)NeutronNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

First superheavy element experiments at the GSI recoil separator TASCA: The production and decay of element 114 in thePu244(Ca48,3-4n) reaction

2011

Experiments with the new recoil separator, Transactinide Separator and Chemistry Apparatus (TASCA), at the GSI were performed by using beams of Ca-48 to irradiate targets of Pb206-208, which led to the production of No252-254 isotopes. These studies allowed for evaluation of the performance of TASCA when coupled to a new detector and electronics system. By following these studies, the isotopes of element 114 ((288-291)114) were produced in irradiations of Pu-244 targets with Ca-48 beams at compound nucleus excitation energies around 41.7 and 37.5 MeV, demonstrating TASCA's ability to perform experiments with picobarn-level cross sections. A total of 15 decay chains were observed and were as…

Nuclear physicsPhysicsNuclear reactionNuclear and High Energy PhysicsIsotopeNeutron emissionTransactinide elementDecay chainAlpha decayTransuranium elementRadioactive decayPhysical Review C
researchProduct

Rapid Synthesis of Radioactive Transition-Metal Carbonyl Complexes at Ambient Conditions

2012

Carbonyl complexes of radioactive transition metals can be easily synthesized with high yields by stopping nuclear fission or fusion products in a gas volume containing CO. Here, we focus on Mo, W, and Os complexes. The reaction takes place at pressures of around 1 bar at room temperature, i.e., at conditions that are easy to accommodate. The formed complexes are highly volatile. They can thus be transported within a gas stream without major losses to setups for their further investigation or direct use. The rapid synthesis holds promise for radiochemical purposes and will be useful for studying, e.g., chemical properties of superheavy elements.

FusionChemistryInorganic chemistrySuperheavy Elements010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciences7. Clean energy0104 chemical sciencesInorganic ChemistryTransition metalNuclear fissionOrganic chemistryPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Attempts to chemically investigate element 112

2006

Summary Two experiments aiming at the chemical investigation of element 112 produced in the heavy ion induced nuclear fusion reaction of 48Ca with 238U were performed at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. Both experiments were designed to determine the adsorption enthalpy of element 112 on a gold surface using a thermochromatography setup. The temperature range covered in the thermochromatography experiments allowed the adsorption of Hg at about 35 °C and of Rn at about -180 °C. Reports from the Flerov Laboratory for Nuclear Reactions (FLNR), Dubna, Russia claim production of a 5-min spontaneous fission (SF) activity assigned to 283112 for the 238U(48Ca,3n)…

Nuclear reactionNuclear physicsAdsorptionIsotopeChemistryEnthalpyRadiochemistryNuclear fusionTransactinide elementPhysical and Theoretical ChemistryAtmospheric temperature rangeSpontaneous fissionRadiochimica Acta
researchProduct

Doubly Magic NucleusHs162108270

2006

Theoretical calculations predict $^{270}\mathrm{Hs}$ ($Z=108$, $N=162$) to be a doubly magic deformed nucleus, decaying mainly by $\ensuremath{\alpha}$-particle emission. In this work, based on a rapid chemical isolation of Hs isotopes produced in the $^{26}\mathrm{Mg}+^{248}\mathrm{Cm}$ reaction, we observed 15 genetically linked nuclear decay chains. Four chains were attributed to the new nuclide $^{270}\mathrm{Hs}$, which decays by $\ensuremath{\alpha}$-particle emission with ${Q}_{\ensuremath{\alpha}}=9.02\ifmmode\pm\else\textpm\fi{}0.03\text{ }\text{ }\mathrm{MeV}$ to $^{266}\mathrm{Sg}$ which undergoes spontaneous fission with a half-life of ${444}_{\ensuremath{-}148}^{+444}\text{ }\t…

Physicsmedicine.anatomical_structuremedicineGeneral Physics and AstronomyAlpha particleAlpha decayAtomic physicsNuclear ExperimentNucleusRadioactive decaySpontaneous fissionPhysical Review Letters
researchProduct

Observation of the3nEvaporation Channel in the Complete Hot-Fusion ReactionMg26+Cm248Leading to the New Superheavy NuclideHs271

2008

The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles ($6\ensuremath{\le}Z\ensuremath{\le}18$) and actinide targets suggests a disappearance of the $3n$ exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction $^{248}\mathrm{Cm}(^{26}\mathrm{Mg},xn)^{274\mathrm{\text{\ensuremath{-}}}x}\mathrm{Hs}$ and the observation of the new nuclide $^{271}\mathrm{Hs}$ produced in the $3n$ evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the $4n$ and $5n$ channels. This indicates the possible discovery of new neutron-r…

Excitation functionPhysicsNuclear TheoryGeneral Physics and AstronomyTransactinide elementNuclear fusionNeutronNuclideActinideAlpha decayAtomic numberAtomic physicsNuclear ExperimentPhysical Review Letters
researchProduct

Study of non-fusion products in the Ti50+Cf249 reaction

2018

The isotopic distribution of nuclei produced in the 50Ti + 249Cf reaction has been studied at the gas-filled recoil separator TASCA at GSI Darmstadt, which separates ions according to differences in magnetic rigidity. The bombardment was performed at an energy around the Bass barrier and with the TASCA magnetic fields set for collecting fusion-evaporation reaction products. Fifty-three isotopes located “north-east” of 208Pb were identified as recoiling products formed in non-fusion channels of the reaction. These recoils were implanted with energies in two distinct ranges; besides one with higher energy, a significant low-energy contribution was identified. The latter observation was not ex…

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsFission01 natural sciencesRecoil separatorMagnetic fieldIonNuclear physicsNon fusionRigidity (electromagnetism)0103 physical sciencesNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

2012

To identify the atomic number of superheavy nuclei produced in Ca-48-induced fusion-evaporation reactions, an experiment aiming at measuring characteristic X-rays is being prepared at GSI, Darmstadt, Germany. The gas-filled separator TASCA will be employed, sending the residues towards the multi-coincidence detector setup TASISpec. Two ion-optical modes relying on differing magnetic polarities of the quadrupole magnets can be used at TASCA. New simulations and experimental tests of transmission and background suppression for these two focusing modes into TASISpec are presented.

PhysicsBackground suppressionDetectorX-rayGeneral Physics and AstronomyDecay chainAtomic numberAtomic physicsNuclear ExperimentQuadrupole magnetActa Physica Polonica B
researchProduct

In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes

2014

Abstract We report on the in-situ synthesis of metal carbonyl complexes with short-lived isotopes of transition metals. Complexes of molybdenum, technetium, ruthenium and rhodium were synthesized by thermalisation of products of neutron-induced fission of 249Cf in a carbon monoxide-nitrogen mixture. Complexes of tungsten, rhenium, osmium, and iridium were synthesized by thermalizing short-lived isotopes produced in 24Mg-induced fusion evaporation reactions in a carbon monoxide containing atmosphere. The chemical reactions took place at ambient temperature and pressure conditions. The complexes were rapidly transported in a gas stream to collection setups or gas phase chromatography devices.…

In situThermal decomposition02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesBond-dissociation energy0104 chemical scienceschemistry.chemical_compoundAdsorptionTransition metalchemistry540 Chemistry570 Life sciences; biologyThermal stabilityPhysical and Theoretical Chemistry0210 nano-technologyChromium hexacarbonylNuclear chemistryRadiochimica Acta
researchProduct

Study of the average charge states of 188Pb and 252,254No ions at the gas-filled separator TASCA

2012

The average charge states of Pb-188 and No-252,No-254 ions in dilute helium gas were measured at the gas-filled recoil separator TASCA. Hydrogen gas was also used as a filling gas for measurements of the average charge state of No-254. Helium and hydrogen gases at pressures from 0.2 mbar to 2.0 mbar were used. A strong dependence of the average charge state on the pressure of the filling gases was observed for both, helium and hydrogen. The influence of this dependence, classically attributed to the so-called "density effect", on the performance of TASCA was investigated. The average charge states of No-254 ions were also measured in mixtures of helium and hydrogen gases at low ga…

PhysicsNuclear and High Energy PhysicsHelium gasHydrogen010308 nuclear & particles physicschemistry.chemical_elementSeparator (oil production)Magnetic separatorActinideAverage charge stateAccelerator Physics and Instrumentation01 natural sciencesRecoil separatorGas-filled separatorIonchemistry0103 physical sciencesTASCAPhysics::Atomic PhysicsAtomic physics010306 general physicsHeavy ionInstrumentationHeliumNuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detecto
researchProduct