0000000000315943

AUTHOR

Jing Duan

Measurement report: PM<sub>2.5</sub>-bound nitrated aromatic compounds in Xi'an, Northwest China – seasonal variations and contributions to optical properties of brown carbon

Abstract. Nitrated aromatic compounds (NACs) are a group of key chromophores for brown carbon (light-absorbing organic carbon, i.e., BrC) aerosol, which affects radiative forcing. The chemical composition and sources of NACs and their contributions to BrC absorption, however, are still not well understood. In this study, PM 2.5 -bound NACs in Xi'an, Northwest China, were investigated for 112 daily PM 2.5 filter samples from 2015 to 2016. Both the total concentrations and contributions from individual species of NACs show distinct seasonal variations. The seasonally averaged concentrations of NACs are 2.1 (spring), 1.1 (summer), 12.9 (fall), and 56 ng m −3 (winter). Thereinto, 4-nitrophenol …

research product

Supplementary material to "Measurement report: PM<sub>2.5</sub>-bound nitrated aromatic compounds in Xi'an, Northwest China: Seasonal variations and contributions to optical properties of brown carbon"

research product

Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China

Humic-like substances (HULIS) are ubiquitous in the atmospheric environment, which affects both human health and climate. We present here the mass concentration and optical characteristics of HULIS isolated from aerosol samples collected in Xi'an, China. Both mass concentration and absorption coefficient (Abs365) of HULIS show clear seasonal differences, with the highest average in winter (3.91 μgC m-3 and 4.78 M m-1, respectively) and the lowest in summer (0.65 μgC m-3 and 0.55 M m-1, respectively). The sources of HULIS_C and light absorption of HULIS were analyzed by positive matrix factorization (PMF) and four major sources were resolved, including secondary formation, biomass burning, c…

research product

Supplementary material to "Measurement report: Large contribution of biomass burning and aqueous-phase processes to the wintertime secondary organic aerosol formation in Xi’an, Northwest China"

research product

Characterization of the light absorbing properties, chromophores composition and sources of brown carbon aerosol in Xi'an, Northwest China

Abstract. The impact of brown carbon aerosol (BrC) on the Earth's radiative forcing balance has been widely recognized but remains uncertain, mainly because the relationships among BrC sources, chromophores, and optical properties of aerosol are poorly understood. In this work, the light absorption properties and chromophore composition of BrC were investigated for samples collected in Xi'an, Northwest China from 2015 to 2016. Both absorption Ångström exponent and mass absorption efficiency show distinct seasonal differences, which could be attributed to the differences in sources and chromophore composition of BrC. Three groups of light-absorbing organics were found to be important BrC ch…

research product

Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties.

The chromophores responsible for light absorption in atmospheric brown carbon (BrC) are not well characterized, which hinders our understanding of BrC chemistry, the links with optical properties, and accurate model representations of BrC to global climate and atmospheric oxidative capacity. In this study, the light absorption properties and chromophore composition of three BrC fractions of different polarities were characterized for urban aerosol collected in Xi'an and Beijing in winter 2013-2014. These three BrC fractions show large differences in light absorption and chromophore composition, but the chromophores responsible for light absorption are similar in Xi'an and Beijing. Water-ins…

research product

Measurement report of the change of PM2.5 composition during the COVID-19 lockdown in urban Xi'an: Enhanced secondary formation and oxidation

Enhanced secondary aerosol formation was observed during the COVID-19 lockdown in Xi'an, especially for polluted episodes. More oxidized‑oxygenated organic aerosol (MO-OOA) and sulfate showed the dominant enhancements, especially in large particle-mode. Meanwhile, relative humidity (RH) showed a positive promotion on the formation of sulfate and MO-OOA during the lockdown, but had no obvious correlation with less oxidized‑oxygenated organic aerosol (LO-OOA) or nitrate. Organosulfurs (OS) displayed a higher contribution (~58%) than inorganic sulfate to total sulfate enhancement in the polluted episode during the lockdown. Although the total nitrate (TN) decreased during the lockdown ascribin…

research product

Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties.

Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) w…

research product

Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing

Sulfate and nitrate from secondary reactions remain as the most abundant inorganic species in atmospheric particle matter (PM). Their formation is initiated by oxidation (either in gas phase or particle phase), followed by neutralization reaction primarily by NH3, or by other alkaline species such as alkaline metal ions if available. The different roles of NH3 and metal ions in neutralizing H2SO4 or HNO3, however, are seldom investigated. Here we conducted semi-continuous measurements of SO4 2−, NO3 −, NH4 +, and their gaseous precursors, as well as alkaline metal ions (Na+, K+, Ca2+, and Mg2+) in wintertime Beijing. Analysis of aerosol acidity (estimated from a thermodynamic model) indicat…

research product

Determination of n-alkanes, PAHs and hopanes in atmospheric aerosol: evaluation and comparison of thermal desorption GC-MS and solvent extraction GC-MS approaches

Organic aerosol (OA) constitutes a large fraction of fine particulate matter (PM) in the urban air. However, the chemical nature and sources of OA are not well constrained. Quantitative analysis of OA is essential for understanding the sources and atmospheric evolution of fine PM, which requires accurate quantification of some organic compounds (e.g., markers). In this study, two analytical approaches, i.e., thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) and solvent extract (SE) GC-MS were evaluated for the determination of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and hopanes in ambient aerosol. For the SE approach, the recovery obtained is 89.3–101.5&…

research product

Contrasting sources and processes of particulate species in haze days with low and high relative humidity in winter time Beijing

Abstract. Although there are many studies of particulate matter (PM) pollution in Beijing, the sources and processes of secondary PM species during haze periods remain unclear. Limited studies have investigated the PM formation in highly-polluted environments under low and high relative humidity (RH) conditions. Herein, we present a systematic comparison of species in submicron particles (PM1) in wintertime Beijing (29 December 2014 to 28 February 2015) for clean periods and pollution periods under low and high RH conditions. PM1 species were measured with an aerosol chemical species monitor (ACSM) and an aethalometer. Sources and processes for organic aerosol (OA) were resolved by positive…

research product