Note on the pragmatic mode-sum regularization method: Translational-splitting in a cosmological background
The point-splitting renormalization method offers a prescription to calculate finite expectation values of quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently shown by Levi and Ori that when the background metric possesses an isometry, like stationary or spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of renormalization that produces efficient numerical calculations. In this note we show that when the background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the above pragmatic regularization technique reduces to the well established adiabatic regularization metho…
Spacetime correlators of perturbations in slow-roll de Sitter inflation
Two-point correlators and self-correlators of primordial perturbations in quasi-de Sitter spacetime backgrounds are considered. For large separations two-point correlators exhibit nearly scale invariance, while for short distances self-correlators need standard renormalization. We study the deformation of two-point correlators to smoothly match the self-correlators at coincidence. The corresponding angular power spectrum is evaluated in the Sachs-Wolfe regime of low multipoles. Scale invariance is maintained, but the amplitude of $C_{\ell}$ could change in a non-trivial way.
On the renormalization of ultraviolet divergences in the inflationary angular power spectrum
We revise the role of ultraviolet divergences of cosmological observables and the corresponding renormalization from a space-time perspective. We employ the two-point function of primordial perturbations generated during inflation to derive an analytic expression for the multipole coefficients Cl in the Sachs-Wolfe regime. We analyzethe ultraviolet behaviorand stress the fact that the standard result in the literature is equivalent to a renormalization of the two-point function at zeroth adiabatic order. We also argue that renormalization at second adiabatic order seems to be more appropriate from a physical point of view. This may change significantly the predictions for Cl, while maintain…
Tensor bounds on the hidden universe
During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large $N$ resummation. We detour to address certain subtleties regarding loop correction…
Spontaneous creation of circularly polarized photons in chiral astrophysical systems
This work establishes a relation between chiral anomalies in curved spacetimes and the radiative content of the gravitational field. In particular, we show that a flux of circularly polarized gravitational waves triggers the spontaneous creation of photons with net circular polarization from the quantum vacuum. Using waveform catalogues we identify precessing binary black holes as astrophysical configurations that emit such gravitational radiation, and then solve the fully non-linear Einstein's equations with numerical relativity to evaluate the net effect. The quantum amplitude for a merger is comparable to the Hawking emission rate of the final black hole, and small to be directly observe…
Adiabatic regularization with a Yukawa interaction
We extend the adiabatic regularization method for an expanding universe to include the Yukawa interaction between quantized Dirac fermions and a homogeneous background scalar field. We give explicit expressions for the renormalized expectation values of the stress-energy tensor $\langle T_{\mu\nu} \rangle$ and the bilinear $\langle \bar\psi\psi\rangle$ in a spatially flat FLRW spacetime. These are basic ingredients in the semiclassical field equations of fermionic matter in curved spacetime interacting with a background scalar field. The ultraviolet subtracting terms of the adiabatic regularization can be naturally interpreted as coming from appropriate counterterms of the background fields…
Renormalized stress-energy tensor for spin-1/2 fields in expanding universes
We provide an explicit expression for the renormalized expectation value of the stress-energy tensor of a spin-$1/2$ field in a spatially flat FLRW universe. Its computation is based on the extension of the adiabatic regularization method to fermion fields introduced recently in the literature. The tensor is given in terms of UV-finite integrals in momentum space, which involve the mode functions that define the quantum state. As illustrative examples of the method efficiency, we see how to compute the renormalized energy density and pressure in two interesting cosmological scenarios: a de Sitter spacetime and a radiation-dominated universe. In the second case, we explicitly show that the l…
Electromagnetic Duality Anomaly in Curved Spacetimes
The source-free Maxwell action is invariant under electric-magnetic duality rotations in arbitrary spacetimes. This leads to a conserved classical Noether charge. We show that this conservation law is broken at the quantum level in presence of a background classical gravitational field with a non-trivial Chern-Pontryagin invariant, in a parallel way to the chiral anomaly for massless Dirac fermions. Among the physical consequences, the net polarization of the quantum electromagnetic field is not conserved.
Classical and quantum aspects of electric-magnetic duality rotations in curved spacetimes
It is well known that the source-free Maxwell equations are invariant under electric-magnetic duality rotations, $\mathrm{F}\ensuremath{\rightarrow}\mathrm{F}\mathrm{cos}\ensuremath{\theta}+^{\ensuremath{\star}}\mathrm{F}\mathrm{sin}\ensuremath{\theta}$. These transformations are indeed a symmetry of the theory in the Noether sense. The associated constant of motion is the difference in the intensity between self-dual and anti-self-dual components of the electromagnetic field or, equivalently, the difference between the right and left circularly polarized components. This conservation law holds even if the electromagnetic field interacts with an arbitrary classical gravitational background.…
Gravity and handedness of photons
Vacuum fluctuations of quantum fields are altered in presence of a strong gravitational background, with important physical consequences. We argue that a non-trivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.