6533b7d9fe1ef96bd126d68a

RESEARCH PRODUCT

Spacetime correlators of perturbations in slow-roll de Sitter inflation

Adrián Del RíoJosé Navarro-salas

subject

High Energy Physics - TheoryPhysicsInflation (cosmology)Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Quantum field theory in curved spacetimeSpacetimeSlow rollFOS: Physical sciencesSpectral densityFísicaGeneral Relativity and Quantum Cosmology (gr-qc)Scale invarianceGeneral Relativity and Quantum CosmologyRenormalizationHigh Energy Physics - Theory (hep-th)De Sitter universeQuantum mechanicsAstrophysics - Cosmology and Nongalactic AstrophysicsMathematical physics

description

Two-point correlators and self-correlators of primordial perturbations in quasi-de Sitter spacetime backgrounds are considered. For large separations two-point correlators exhibit nearly scale invariance, while for short distances self-correlators need standard renormalization. We study the deformation of two-point correlators to smoothly match the self-correlators at coincidence. The corresponding angular power spectrum is evaluated in the Sachs-Wolfe regime of low multipoles. Scale invariance is maintained, but the amplitude of $C_{\ell}$ could change in a non-trivial way.

10.1103/physrevd.89.084037http://hdl.handle.net/10550/42972