0000000000318941

AUTHOR

Sergi Nadal-gisbert

0000-0002-1416-6277

Note on the pragmatic mode-sum regularization method: Translational-splitting in a cosmological background

The point-splitting renormalization method offers a prescription to calculate finite expectation values of quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently shown by Levi and Ori that when the background metric possesses an isometry, like stationary or spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of renormalization that produces efficient numerical calculations. In this note we show that when the background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the above pragmatic regularization technique reduces to the well established adiabatic regularization metho…

research product

Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime

The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar fi…

research product