6533b870fe1ef96bd12cf34f

RESEARCH PRODUCT

Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime

Antonio FerreiroSergi Nadal-gisbertJosé Navarro-salas

subject

High Energy Physics - TheoryPhysicsField (physics)Yukawa potentialFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Decoupling (cosmology)Yukawa interactionGeneral Relativity and Quantum CosmologyRenormalizationTheoretical physicsHigh Energy Physics - Theory (hep-th)Beta function (physics)Scalar fieldCurved space

description

The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar field, all the beta function exhibit decoupling, including also the gravitational ones. For a quantized Dirac field, decoupling appears almost for all the beta functions. We obtain the anomalous result that the mass of the background scalar field does not decouple.

https://doi.org/10.1103/physrevd.104.025003