0000000000319098

AUTHOR

Yi-hsuan Lin

0000-0002-5667-9249

showing 9 related works from this author

Inverse problems for elliptic equations with fractional power type nonlinearities

2020

We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. By using a fractional order adaptation of this method, we show that the results of [LLLS20a, LLLS20b] remain valid for general power type nonlinearities.

Mathematics - Differential GeometryApplied Mathematics010102 general mathematicsType (model theory)Inverse problem01 natural sciencesFractional powerPower (physics)010101 applied mathematicsNonlinear systemMathematics - Analysis of PDEsDifferential Geometry (math.DG)Linearization35R30 35J25 35J61FOS: MathematicsApplied mathematicsOrder (group theory)0101 mathematicsAnalysisLinear equationAnalysis of PDEs (math.AP)Mathematics
researchProduct

Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators

2017

Let \begin{document}$A∈{\rm{Sym}}(n× n)$\end{document} be an elliptic 2-tensor. Consider the anisotropic fractional Schrodinger operator \begin{document}$\mathscr{L}_A^s+q$\end{document} , where \begin{document}$\mathscr{L}_A^s: = (-\nabla·(A(x)\nabla))^s$\end{document} , \begin{document}$s∈ (0, 1)$\end{document} and \begin{document}$q∈ L^∞$\end{document} . We are concerned with the simultaneous recovery of \begin{document}$q$\end{document} and possibly embedded soft or hard obstacles inside \begin{document}$q$\end{document} by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain \begin{document}$Ω$\end{document} associated with \begin{document}$\mathscr{L}_A^s+q$\end{docume…

PhysicsControl and OptimizationApproximation property02 engineering and technology01 natural sciences010101 applied mathematicsCombinatoricssymbols.namesakeMathematics - Analysis of PDEsOperator (computer programming)Modeling and SimulationBounded functionDomain (ring theory)0202 electrical engineering electronic engineering information engineeringsymbolsDiscrete Mathematics and Combinatorics020201 artificial intelligence & image processingPharmacology (medical)Nabla symbolUniqueness0101 mathematicsAnisotropyAnalysisSchrödinger's catInverse Problems & Imaging
researchProduct

The Calderón Problem for a Space-Time Fractional Parabolic Equation

2020

In this article we study an inverse problem for the space-time fractional parabolic operator $(\partial_t-\Delta)^s+Q$ with $0<s<1$ in any space dimension. We uniquely determine the unknown bounded...

Applied MathematicsSpace timeOperator (physics)Space dimensionMathematical analysisMathematics::Analysis of PDEsInverse problem01 natural sciences010101 applied mathematicsComputational MathematicsBounded function0101 mathematicsAnalysisMathematicsSIAM Journal on Mathematical Analysis
researchProduct

The Calderón problem for the fractional Schrödinger equation with drift

2020

We investigate the Calder\'on problem for the fractional Schr\"odinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, this nonlocal problem does \emph{not} enjoy a gauge invariance. The uniqueness result is complemented by an associated logarithmic stability estimate under suitable apriori assumptions. Also uniqueness under finitely many \emph{generic} measurements is discussed. Here the genericity is obtained through \emph{singularity theory} which might also be interesting in the context of hybrid inverse pro…

osittaisdifferentiaaliyhtälötLogarithmSingularity theoryApplied MathematicsContext (language use)Inverse probleminversio-ongelmatDomain (mathematical analysis)Schrödinger equationsymbols.namesakeMathematics - Analysis of PDEsBounded functionsymbolsApplied mathematicsUniquenessAnalysisMathematics
researchProduct

Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations

2021

We study various partial data inverse boundary value problems for the semilinear elliptic equation $\Delta u+ a(x,u)=0$ in a domain in $\mathbb R^n$ by using the higher order linearization technique introduced in [LLS 19, FO19]. We show that the Dirichlet-to-Neumann map of the above equation determines the Taylor series of $a(x,z)$ at $z=0$ under general assumptions on $a(x,z)$. The determination of the Taylor series can be done in parallel with the detection of an unknown cavity inside the domain or an unknown part of the boundary of the domain. The method relies on the solution of the linearized partial data Calder\'on problem [FKSU09], and implies the solution of partial data problems fo…

inverse obstacle problemGeneral MathematicsMathematics::Analysis of PDEsInverseBoundary (topology)Schiffer's problemCalderon problempartial data01 natural sciencesDomain (mathematical analysis)inversio-ongelmatsymbols.namesakeMathematics - Analysis of PDEsLinearizationTaylor series111 MathematicsFOS: MathematicsSchiffer’s problemBoundary value problem0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötCalderón problem010102 general mathematicsMathematical analysisInverse problemElliptic curvesymbolssimultaneous recoveryAnalysis of PDEs (math.AP)
researchProduct

Radiating and non-radiating sources in elasticity

2018

In this work, we study the inverse source problem of a fixed frequency for the Navier's equation. We investigate that nonradiating external forces. If the support of such a force has a convex or non-convex corner or edge on their boundary, the force must be vanishing there. The vanishing property at corners and edges holds also for sufficiently smooth transmission eigenfunctions in elasticity. The idea originates from the enclosure method: The energy identity and new type exponential solutions for the Navier's equation.

Enclosure010103 numerical & computational mathematicsNavier equation01 natural sciencesinversio-ongelmatTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsPhysicselastic wavesApplied MathematicsMathematical analysisRegular polygonElasticity (physics)EigenfunctionComputer Science ApplicationsExponential function010101 applied mathematicsInverse source probleminverse source problemsSignal Processingexponential solutions transmission eigenfunctionsFixed frequencyAnalysis of PDEs (math.AP)
researchProduct

Monotonicity-based inversion of the fractional Schr\"odinger equation II. General potentials and stability

2019

In this work, we use monotonicity-based methods for the fractional Schr\"odinger equation with general potentials $q\in L^\infty(\Omega)$ in a Lipschitz bounded open set $\Omega\subset \mathbb R^n$ in any dimension $n\in \mathbb N$. We demonstrate that if-and-only-if monotonicity relations between potentials and the Dirichlet-to-Neumann map hold up to a finite dimensional subspace. Based on these if-and-only-if monotonicity relations, we derive a constructive global uniqueness results for the fractional Calder\'on problem and its linearized version. We also derive a reconstruction method for unknown obstacles in a given domain that only requires the background solution of the fractional Sch…

Applied MathematicsMathematical analysisOpen setMonotonic functionLipschitz continuity01 natural sciencesInversion (discrete mathematics)Stability (probability)OmegaSchrödinger equation010101 applied mathematicsComputational Mathematicssymbols.namesakeMathematics - Analysis of PDEs35R30Bounded functionsymbols0101 mathematicsAnalysisMathematics
researchProduct

The Calderón problem for the fractional wave equation: Uniqueness and optimal stability

2021

We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and stability estimate in the determination of the potential by the exterior Dirichlet-to-Neumann map. The main tools are the qualitative and quantitative unique continuation properties for the fractional Laplacian. For the stability, we also prove that the log type stability estimate is optimal. The log type estimate shows the striking difference between the inverse problems for the fractional and classical wave equations in the stability issue. The results hold for any spatial di…

osittaisdifferentiaaliyhtälötApplied MathematicsnonlocalCalder´on problemfractional wave equationinversio-ongelmatComputational MathematicsperidynamicMathematics - Analysis of PDEslogarithmic stabilityFOS: Mathematicsstrong uniquenessfractional LaplacianRunge approximationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Inverse problems for elliptic equations with power type nonlinearities

2021

We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…

Mathematics - Differential GeometryGLOBAL UNIQUENESSGeneral MathematicsConformal mapCALDERON PROBLEMTransversally anisotropic01 natural sciencesinversio-ongelmatMathematics - Analysis of PDEsSimple (abstract algebra)Euclidean geometryFOS: Mathematics111 MathematicsApplied mathematics0101 mathematicsMathematicsInverse boundary value problemosittaisdifferentiaaliyhtälötCalderón problemGeometrical opticsSemilinear equationApplied Mathematics010102 general mathematicstransversally anisotropicInverse problemManifold010101 applied mathematicssemilinear equationNonlinear systemDifferential Geometry (math.DG)inverse boundary value problemLinear equationAnalysis of PDEs (math.AP)Journal de Mathématiques Pures et Appliquées
researchProduct