6533b7d9fe1ef96bd126ce0d

RESEARCH PRODUCT

Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators

Xinlin CaoHongyu LiuYi-hsuan Lin

subject

PhysicsControl and OptimizationApproximation property02 engineering and technology01 natural sciences010101 applied mathematicsCombinatoricssymbols.namesakeMathematics - Analysis of PDEsOperator (computer programming)Modeling and SimulationBounded functionDomain (ring theory)0202 electrical engineering electronic engineering information engineeringsymbolsDiscrete Mathematics and Combinatorics020201 artificial intelligence & image processingPharmacology (medical)Nabla symbolUniqueness0101 mathematicsAnisotropyAnalysisSchrödinger's cat

description

Let \begin{document}$A∈{\rm{Sym}}(n× n)$\end{document} be an elliptic 2-tensor. Consider the anisotropic fractional Schrodinger operator \begin{document}$\mathscr{L}_A^s+q$\end{document} , where \begin{document}$\mathscr{L}_A^s: = (-\nabla·(A(x)\nabla))^s$\end{document} , \begin{document}$s∈ (0, 1)$\end{document} and \begin{document}$q∈ L^∞$\end{document} . We are concerned with the simultaneous recovery of \begin{document}$q$\end{document} and possibly embedded soft or hard obstacles inside \begin{document}$q$\end{document} by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain \begin{document}$Ω$\end{document} associated with \begin{document}$\mathscr{L}_A^s+q$\end{document} . It is shown that a single measurement can uniquely determine the embedded obstacle, independent of the surrounding potential \begin{document}$q$\end{document} . If multiple measurements are allowed, then the surrounding potential \begin{document}$q$\end{document} can also be uniquely recovered. These are surprising findings since in the local case, namely \begin{document}$s = 1$\end{document} , both the obstacle recovery by a single measurement and the simultaneous recovery of the surrounding potential by multiple measurements are long-standing problems and still remain open in the literature. Our argument for the nonlocal inverse problem is mainly based on the strong uniqueness property and Runge approximation property for anisotropic fractional Schrodinger operators.

https://doi.org/10.3934/ipi.2019011