0000000000343893

AUTHOR

Hongyu Liu

0000-0002-2930-3510

showing 2 related works from this author

Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators

2017

Let \begin{document}$A∈{\rm{Sym}}(n× n)$\end{document} be an elliptic 2-tensor. Consider the anisotropic fractional Schrodinger operator \begin{document}$\mathscr{L}_A^s+q$\end{document} , where \begin{document}$\mathscr{L}_A^s: = (-\nabla·(A(x)\nabla))^s$\end{document} , \begin{document}$s∈ (0, 1)$\end{document} and \begin{document}$q∈ L^∞$\end{document} . We are concerned with the simultaneous recovery of \begin{document}$q$\end{document} and possibly embedded soft or hard obstacles inside \begin{document}$q$\end{document} by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain \begin{document}$Ω$\end{document} associated with \begin{document}$\mathscr{L}_A^s+q$\end{docume…

PhysicsControl and OptimizationApproximation property02 engineering and technology01 natural sciences010101 applied mathematicsCombinatoricssymbols.namesakeMathematics - Analysis of PDEsOperator (computer programming)Modeling and SimulationBounded functionDomain (ring theory)0202 electrical engineering electronic engineering information engineeringsymbolsDiscrete Mathematics and Combinatorics020201 artificial intelligence & image processingPharmacology (medical)Nabla symbolUniqueness0101 mathematicsAnisotropyAnalysisSchrödinger's catInverse Problems & Imaging
researchProduct

Determining a Random Schrödinger Operator : Both Potential and Source are Random

2020

We study an inverse scattering problem associated with a Schr\"odinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a proper sense. We then derive two unique recovery results in determining the rough strengths of the random source and the random potential, by using the corresponding far-field data. The first recovery result shows that a single realization of the passive scattering measurements uniquely recovers the rough strength of the random source. The second one shows that, by a single realization of the backscattering data, the rough strength of the random potential can be recovered…

Complex systemMicrolocal analysis01 natural sciencesinversio-ongelmatsähkömagneettinen säteilysymbols.namesakeOperator (computer programming)Mathematics - Analysis of PDEs0103 physical sciencessironta0101 mathematicsMathematical PhysicsMathematics35Q60 35J05 31B10 35R30 78A40osittaisdifferentiaaliyhtälötScattering010102 general mathematicsMathematical analysisErgodicityStatistical and Nonlinear PhysicsInverse scattering problemsymbols010307 mathematical physicsmatemaattiset mallitRealization (probability)Schrödinger's cat
researchProduct