0000000000319822

AUTHOR

Simone Sanna

showing 4 related works from this author

Charge compensation by long-period reconstruction in strongly polar lithium niobate surfaces

2013

The microscopic structure of the polar (000$\overline{1}$) and (0001) surfaces of lithium niobate is investigated by atomic-resolution frequency modulation atomic force microscopy and first-principles calculations. It is found that the surface reconstructs at annealing temperatures sufficiently high to drive off external adsorbates. In particular a ($\sqrt{7}\ifmmode\times\else\texttimes\fi{}\sqrt{7}$)$R$19.1${}^{\ensuremath{\circ}}$ reconstruction is found for the (000$\overline{1}$) surface. Density-functional theory calculations show that---apart from the $(\sqrt{7}\ifmmode\times\else\texttimes\fi{}\sqrt{7})$---a series of adatom-induced surface reconstructions exist that lower the surfa…

Physicsbusiness.industryAnnealing (metallurgy)Atomic force microscopyLithium niobateCondensed Matter Physics530Surface energyElectronic Optical and Magnetic Materialschemistry.chemical_compoundOpticschemistryLong periodPolarCharge compensationSurface chargeAtomic physicsbusiness
researchProduct

Atomic-resolution imaging of the polar (0001¯) surface of LiNbO3in aqueous solution by frequency modulation atomic force microscopy

2012

S. Rode,1 R. Holscher,2 S. Sanna,2 S. Klassen,1 K. Kobayashi,3 H. Yamada,3 W. G. Schmidt,2 and A. Kuhnle1,* 1Institut fur Physikalische Chemie, Fachbereich Chemie, Johannes Gutenberg-Universitat Mainz, Jakob-Welder-Weg 11, 55099 Mainz, Germany 2Lehrstuhl fur Theoretische Physik, Universitat Paderborn, 33095 Paderborn, Germany 3Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan (Received 31 March 2012; revised manuscript received 12 June 2012; published 29 August 2012)

PhysicsSurface (mathematics)Aqueous solutionAtomic force microscopybusiness.industryScience and engineeringCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsOpticsAtomic resolutionPolarAtomic physicsbusinessFrequency modulationPhysical Review B
researchProduct

Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory

2014

The ${\text{LiNbO}}_{3}$(2$\overline{1}\overline{1}0$) surface, commonly referred to as X-cut, is investigated by means of atomic force microscopy and first-principles calculations. Atomically resolved atomic force microscopy images show geometrical patterns not compatible with truncated bulk terminations. Fast Fourier transformation of the real-space images shows an oblique surface unit cell with lattice parameters of $a=0.75\ifmmode\pm\else\textpm\fi{}0.02$ nm, $b=0.54\ifmmode\pm\else\textpm\fi{}0.02$ nm, and $\ensuremath{\alpha}=94.{8}^{\ensuremath{\circ}}$. Comparing these experimental results with the theoretical models of stable surface terminations provides clear evidence for the for…

Kelvin probe force microscopeMaterials scienceAtomic force microscopyLattice (order)Fast Fourier transformOxygen ionsTheoretical modelsDensity functional theoryAtomic physicsCondensed Matter PhysicsElementary charge530Electronic Optical and Magnetic Materials
researchProduct

Density-functional based tight-binding study of small gold clusters

2006

In this paper, we report the ability of self-consistent-charge density-functional based tight-binding method to describe small gold clusters. We concentrate our investigations mainly on anions, and find that the method describes their geometric and electronic structures fairly well, in comparison with density-functional calculations. In particular, the method correctly reproduces the planarity of ground-state structures up to cluster sizes in agreement with experiment and density-functional theory.

Physicsself-consistent-field methodTight bindingOrbital-free density functional theoryCluster (physics)General Physics and AstronomyAtomic physicsspectroscopy and geometrical structure of clustersMolecular physicsPlanarity testingdensity functional theory
researchProduct