0000000000319849
AUTHOR
Michael Grøndahl Nielsen
Silicon-loaded surface plasmon polariton waveguides for nanosecond thermo-optical switching
A MHz-bandwidth thermo-optical (TO) plasmonic switch operating at telecommunication wavelengths and based on a hybrid solid-state silicon-loaded surface plasmon polariton waveguide design is demonstrated numerically. The nanosecond (ns) TO response of the switch is due to the high thermal conductivities of the employed materials and we demonstrate specifically a 10 dB extinction ratio in the time-dependent switch transmission which features a pulsed 1 ns rise time followed by a 25 ns fall time when the switch is photo-thermally activated by a ns pulse at 532 nm wavelength.
Recess photomask contact lithography and the fabrication of coupled silicon photonic and plasmonic waveguide switches
Display Omitted A lithography technique capable of printing submicron-sized features inside deep cavities is presented.A so-called recess photomask adapted to the wafer's topography is employed.Based on a standard mask aligner, Recess Photomask Contact Lithography has moderate cost.Its efficiency for a photonic/plasmonic switch application was demonstrated experimentally.The technique is extensible to any design and to wafers with multiple level recesses. A novel lithographic method is presented, based on the use of a mask aligner in the contact mode with a modified photomask, the so-called recess photomask; its goal is the printing of submicron-sized patterns into deep cavities of a chip, …
Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides
The thermo-optical dynamics of polymer loaded surface plasmon waveguide (PLSPPW) based devices photo-thermally excited in the nanosecond regime is investigated. We demonstrate thermo-absorption of PLSPPW modes mediated by the temperature-dependent ohmic losses of the metal and the thermally controlled field distribution of the plasmon mode within the metal. For a PLSPPW excited by sub-nanosecond long pulses, we find that the thermo-absorption process leads to modulation depths up to 50% and features an activation time around 2ns whereas the relaxation time is around 800ns, four-fold smaller than the cooling time of the metal film itself. Next, we observe the photo-thermal activation of PLSP…
Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges
We report on monitoring the mode power in dielectric-loaded surface plasmon polariton waveguides (DLSPPWs) by measuring the resistance of gold electrodes, supporting the DLSPPW mode propagation, with internal (on-chip) Wheatstone bridges. The investigated DLSPPW configuration consisted of 1-μm-thick and 10-μm-wide cycloaliphatic acrylate polymer ridges tapered laterally to a 1-μm-wide ridge placed on a 50-nm-thin and 4-um wide gold stripe, all supported by a ~1.7-µm-thick Cytop layer deposited on a Si wafer. The fabricated DLSPPW power monitors were characterized at telecom wavelengths, showing very high responsivities reaching up to ~6.4 μV/μW (for a bias voltage of 245 mV) and the operati…
Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons
Efficient excitation of surface plasmon polaritons (SPPs) remains one of the most challenging issues in areas of plasmonics related to information communication technologies. In particular, combining high SPP excitation efficiency and acceptance of any polarization of incident light appeared to be impossible to attain due to the polarized nature of SPPs. Here we demonstrate plasmonic couplers that represent arrays of gap SPP resonators producing upon reflection two orthogonal phase gradients in respective linear polarizations of incident radiation. These couplers are thereby capable of efficiently converting incident radiation with arbitrary polarization into SPPs that propagate in orthogon…