0000000000320450
AUTHOR
Harald Keller
Physiological and Molecular Characteristics of Elicitin-Induced Systemic Acquired Resistance in Tobacco
Elicitins are low molecular weight proteins secreted by all Phytophthora species analyzed so far. Application of the purified proteins to tobacco Nicotiana tabacum leads to the induction of resistance to subsequent inoculations with the black shank-causing agent, Phytophthora parasitica var nicotianae. In this paper, we describe the systemic characteristics of elicitin-induced acquired resistance in tobacco. Elicitin application is followed by the rapid translocation of the protein in the plant. The basic elicitin, cryptogein, induces necrosis formation in the leaves, which results from accumulation of the protein in these organs. Necrosis does not seem to be essential for the establishment…
Responses of tobacco to elicitins, proteins from Phytophthora spp. eliciting acquired resistance
With the exception of Phytophthora parasitica var. nicotianae (Ppn), the tobacco black-shank causing agent, Phytophthoras give rise to non-host interactions with tobacco. The resulting local hypersensitive response (HR) is accompanied by necrotic spots on the leaves at distance from the infection site [1]. Low molecular weight proteins are excreted by these Phytophthoras, both in planta and in vitro. They form a family of highly homologous holoproteins, called elicitins [2]. Tobacco plants treated with purified elicitins develop necrotic symptoms similar to those induced by the live fungus, and become resistant to further inoculation with Ppn [3]. Elicitin-treated tobacco represent an attra…
Necrosis formation release of internal plant signals and expression of defense genes are linked processes leading to acquired resistance against P. parasitica var. Nicotianae after application of elicitins to tobacco
International audience
Signal perception and transduction, secondary messengers and gene activation in elicitin-triggered HR and SAR in tobacco
National audience