0000000000322931

AUTHOR

T. Ropponen

Time Evolution of High-Energy Bremsstrahlung and Argon Ion Production in Electron Cyclotron Resonance Ion-Source Plasma

Bremsstrahlung radiation measurement is one of the most commonly used plasma-diagnostics methods. Most of the bremsstrahlung measurements with electron cyclotron resonance ion sources (ECRISs) have been performed in continuous-operation mode yielding information only on the steady-state bremsstrahlung emission. This paper describes results of bremsstrahlung and argon ion-current measurements with the JYFL 14-GHz ECRIS operated in a pulsed mode. The bremsstrahlung radiation was studied as a function of neutral-gas pressure and radio frequency power. The timescale of ECRIS bremsstrahlung production is compared to ion-production timescale for different charge states of argon for the first time…

research product

Effect of electron cyclotron resonance ion source frequency tuning on ion beam intensity and quality at Department of Physics, University of Jyväskylä.

Ion beam intensity and quality have a crucial effect on the operation efficiency of the accelerator facilities. This paper presents the investigations on the ion beam intensity and quality after the mass separation performed with the Department of Physics, University of Jyvaskyla 14 GHz electron cyclotron resonance ion source by sweeping the microwave in the 14.05–14.13 GHz range. In many cases a clear variation in the ion beam intensity and quality as a function of the frequency was observed. The effect of frequency tuning increased with the charge state. In addition, clear changes in the beam structure seen with the beam viewer were observed. The results confirmed that frequency tuning ca…

research product

Shape coexistence at the proton drip-line: First identification of excited states inPb180

Excited states in the extremely neutron-deficient nucleus {sup 180}Pb have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaeskylae. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross section of only 10 nb for the {sup 92}Mo({sup 90}Zr,2n){sup 180}Pb reaction. A continuation of the trend observed in {sup 182}Pb and {sup 184}Pb is seen, where the prolate minimum continues to rise beyond the N=104 midshell with respect to the spherical ground state. Beyond-mean-field calculations are in reasonable correspondence with the…

research product

The effect of magnetic field strength on the time evolution of high energy bremsstrahlung radiation created by an electron cyclotron resonance ion source

Abstract An electron cyclotron resonance (ECR) ion source is one of the most used ion source types for high charge state heavy ion production. In ECR plasma the electrons are heated by radio frequency microwaves in order to provide ionization of neutral gases. As a consequence, ECR heating also generates very high electron energies (up to MeV region) which can produce a vast amount of bremsstrahlung radiation causing problems with radiation shielding and heating superconducting cryostat of an ECR ion source. To gain information about the time evolution of the electron energies in ECR plasma radial bremsstrahlung measurements were performed. JYFL 14 GHz ECR ion source was operated in pulsed …

research product

Hybrid simulation of electron cyclotron resonance heating

Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron de…

research product

First results with the yin-yang type electron cyclotron resonance ion source

Abstract Highly charged heavy-ion beams are often produced with Electron Cyclotron Resonance Ion Sources (ECRIS). The so-called conventional minimum-B ECRIS design includes two solenoid magnets and a multipole magnet (usually a hexapole). A minimum-B configuration can also be formed with “yin-yang” (“baseball”) type coils. Such a magnetic field configuration has been extensively tested in magnetic fusion experiments but not for the production of highly charged heavy ions. The application of the afore-mentioned coil structure to the production of multiply charged ion beams was studied. In this paper we present a design of a yin-yang type ion source known as the ARC-ECRIS and some preliminary…

research product

Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.

research product

A status report of the multipurpose superconducting electron cyclotron resonance ion source

Intense heavy ion beam production with electron cyclotron resonance (ECR) ion sources is a common requirement for many of the accelerators under construction in Europe and elsewhere. An average increase of about one order of magnitude per decade in the performance of ECR ion sources was obtained up to now since the time of pioneering experiment of R. Geller at CEA, Grenoble, and this trend is not deemed to get the saturation at least in the next decade, according to the increased availability of powerful magnets and microwave generators. Electron density above 1013 cm(-3) and very high current of multiply charged ions are expected with the use of 28 GHz microwave heating and of an adequate …

research product

Ion beam development for the needs of the JYFL nuclear physics programme

The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I(total)or =0.7 mA) and only about 2% for high beam intensities (I(total)1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not …

research product

The effects of beam line pressure on the beam quality of an electron cyclotron resonance ion source

The results of a series of measurements studying the possibility to use neutral gas feeding into the beam line as a way to improve the quality of the heavy ion beams produced with an electron cyclotron resonance ion source (ECRIS) are presented. Significant reduction of the beam spot size and emittance can be achieved with this method. The observed effects are presumably due to increased space charge compensation degree of the ion beam in the beam line section between the ion source and the analyzing magnet. This is the region where the neutral gas was injected. It is shown that the effects are independent of the ion source tuning. Transmission measurements through the beam line and K-130 c…

research product

IBSIMU: a three-dimensional simulation software for charged particle optics.

A general-purpose three-dimensional (3D) simulation code IBSIMU for charged particle optics with space charge is under development at JYFL. The code was originally developed for designing a slit-beam plasma extraction and nanosecond scale chopping for pulsed neutron generator, but has been developed further and has been used for many applications. The code features a nonlinear FDM Poisson's equation solver based on fast stabilized biconjugate gradient method with ILU0 preconditioner for solving electrostatic fields. A generally accepted nonlinear plasma model is used for plasma extraction. Magnetic fields can be imported to the simulations from other programs. The particle trajectories are …

research product

The role of seed electrons on the plasma breakdown and preglow of electron cyclotron resonance ion source

The 14 GHz Electron Cyclotron Resonance Ion Source at University of Jyväskylä, Department of Physics (JYFL) has been operated in pulsed mode in order to study the plasma breakdown and preglow effect. It was observed that the plasma breakdown time and preglow characteristics are affected by seed electrons provided by a continuous low power microwave signal at secondary frequency. Sustaining low density plasma during the off-period of high power microwave pulses at the primary frequency shifts the charge state distribution of the preglow transient toward higher charge states. This could be exploited for applications requiring fast and efficient ionization of radioactive elements as proposed f…

research product

The effect of rf pulse pattern on bremsstrahlung and ion current time evolution of an ECRIS.

Time-resolved helium ion production and bremsstrahlung emission from JYFL 14 GHz ECRIS is presented with different radio frequency pulse lengths. rf on times are varied from 5 to 50 ms and rf off times from 10 to 1000 ms between different measurement sets. It is observed that the plasma breakdown occurs a few milliseconds after launching the rf power into the plasma chamber, and in the beginning of the rf pulses a preglow transient is seen. During this transient the ion beam currents are increased by several factors compared to a steady state situation. By adjusting the rf pulse separation the maximum ion beam currents can be maintained during the so-called preglow regime while the amount o…

research product

Studies of plasma breakdown and electron heating on a 14 GHz ECR ion source through measurement of plasma bremsstrahlung

Temporal evolution of plasma bremsstrahlung emitted by a 14?GHz electron cyclotron resonance ion source (ECRIS) operated in pulsed mode is presented in the energy range 1.5?400?keV with 100??s resolution. Such a high temporal resolution together with this energy range has never been measured before with an ECRIS. Data are presented as a function of microwave power, neutral gas pressure, magnetic field configuration and seed electron density. The saturation time of the bremsstrahlung count rate is almost independent of the photon energy up to 100?keV and exhibits similar characteristics with the neutral gas balance. The average photon energy during the plasma breakdown is significantly highe…

research product