0000000000323051
AUTHOR
Antonello Maruotti
Estimating COVID-19-induced Excess Mortality in Lombardy
AbstractWe compare the expected all-cause mortality with the observed one for different age classes during the pandemic in Lombardy, which was the epicenter of the epidemic in Italy and still is the region most affected by the pandemic. A generalized linear mixed model is introduced to model weekly mortality from 2011 to 2019, taking into account seasonal patterns and year-specific trends. Based on the 2019 year-specific conditional best linear unbiased predictions, a significant excess of mortality is estimated in 2020, leading to approximately 35000 more deaths than expected, mainly arising during the first wave. In 2021, instead, the excess mortality is not significantly different from z…
Spatio-temporal modelling of COVID-19 incident cases using Richards’ curve: An application to the Italian regions
Abstract We introduce an extended generalised logistic growth model for discrete outcomes, in which spatial and temporal dependence are dealt with the specification of a network structure within an Auto-Regressive approach. A major challenge concerns the specification of the network structure, crucial to consistently estimate the canonical parameters of the generalised logistic curve, e.g. peak time and height. We compared a network based on geographic proximity and one built on historical data of transport exchanges between regions. Parameters are estimated under the Bayesian framework, using Stan probabilistic programming language. The proposed approach is motivated by the analysis of bot…
Unreliable predictions about COVID‐19 infections and hospitalizations make people worry: The case of Italy
Estimating COVID-19-induced Excess Mortality in Lombardy, Italy.
We compare the expected all-cause mortality with the observed one for different age classes during the pandemic in Lombardy, which was the epicenter of the epidemic in Italy. The first case in Italy was found in Lombardy in early 2020, and the first wave was mainly centered in Lombardy. The other three waves, in Autumn 2020, March 2021 and Summer 2021 are also characterized by a high number of cases in absolute terms. A generalized linear mixed model is introduced to model weekly mortality from 2011 to 2019, taking into account seasonal patterns and year-specific trends. Based on the 2019 year-specific conditional best linear unbiased predictions, a significant excess of mortality is estima…
An ensemble approach to short-term forecast of COVID-19 intensive care occupancy in Italian Regions
Abstract The availability of intensive care beds during the COVID‐19 epidemic is crucial to guarantee the best possible treatment to severely affected patients. In this work we show a simple strategy for short‐term prediction of COVID‐19 intensive care unit (ICU) beds, that has proved very effective during the Italian outbreak in February to May 2020. Our approach is based on an optimal ensemble of two simple methods: a generalized linear mixed regression model, which pools information over different areas, and an area‐specific nonstationary integer autoregressive methodology. Optimal weights are estimated using a leave‐last‐out rationale. The approach has been set up and validated during t…
Nowcasting COVID‐19 incidence indicators during the Italian first outbreak
A novel parametric regression model is proposed to fit incidence data typically collected during epidemics. The proposal is motivated by real-time monitoring and short-term forecasting of the main epidemiological indicators within the first outbreak of COVID-19 in Italy. Accurate short-term predictions, including the potential effect of exogenous or external variables are provided. This ensures to accurately predict important characteristics of the epidemic (e.g., peak time and height), allowing for a better allocation of health resources over time. Parameter estimation is carried out in a maximum likelihood framework. All computational details required to reproduce the approach and replica…