0000000000327699

AUTHOR

Ouadi Beya

Subsignal-based denoising from piecewise linear or constant signal

15 pages; International audience; n the present work, a novel signal denoising technique for piecewise constant or linear signals is presented termed as "signal split." The proposed method separates the sharp edges or transitions from the noise elements by splitting the signal into different parts. Unlike many noise removal techniques, the method works only in the nonorthogonal domain. The new method utilizes Stein unbiased risk estimate (SURE) to split the signal, Lipschitz exponents to identify noise elements, and a polynomial fitting approach for the sub signal reconstruction. At the final stage, merging of all parts yield in the fully denoised signal at a very low computational cost. St…

research product

Electrocardiogram Signal Analysing

In this paper, we develop a new approach based on nonlinear filtering scheme (NLFS) on cardiac signal to evaluate a robust single-lead electrocardiogram (ECG) delineation system and waves localization method based on nonlinear filtering approach. This system is built in two phases, in the first phase, we proposed a mathematical model for detecting ECG features like QRS complex peak, P and T-waves onsets and ends fromnoise free of synthetic ECG signal. Later, we develop a theoretical model to obtain real approach for detecting these features from real noisy ECG signals. Our method has been evaluated on electrocardiogram signals of QT-MIT standard database, the QRS peak achieve sensitivity (S…

research product

Procédé et dispositif de détermination de paramètres représentatifs d'une activité cardiovasculaire

research product

Electrocardiogram Signal Analysing - Delineation and Localization of ECG Component

In this paper, we develop a new approach based on nonlinear filtering scheme (NLFS) on cardiac signal to evaluate a robust single-lead electrocardiogram (ECG) delineation system and waves localization method based on nonlinear filtering approach. This system is built in two phases, in the first phase, we proposed a mathematical model for detecting ECG features like QRS complex peak, P and T-waves onsets and ends from noise free of synthetic ECG signal. Later, we develop a theoretical model to obtain real approach for detecting these features from real noisy ECG signals. Our method has been evaluated on electrocardiogram signals of QT-MIT standard database, the QRS peak achieve sensitivity (…

research product

Analysis and recognition of vibratory signals : contribution to the treatment and analysis of cardiac signals for telemedecine

The heart is a muscle. Its mechanical operation is like a pump charged for distributing and retrieving the blood in the lungs and cardiovascular system. Its electrical operation is regulated by the sinus node, a pacemaker or electric regulator responsible for triggering the natural heart beats that punctuate the functioning of the body.Doctors monitor the electromechanical functioning of the heart by recording an electrical signal called an electrocardiogram (ECG) or an audible signal : the phonocardiogram (PCG). The analysis and processing of these two signals are essential for diagnosis, to help detect anomalies and cardiac pathologies.The objective of this thesis is to develop signal pro…

research product

EDA, approche non linéaire de débruitage des signaux cardiaques

National audience

research product