0000000000336203

AUTHOR

Pietro Buzzini

0000-0001-6793-0606

showing 4 related works from this author

Anhydrobiosis in yeasts: Psychrotolerant yeasts are highly resistant to dehydration.

2018

Yeast cells are able to transition into a state of anhydrobiosis (temporary reversible suspension of metabolism) under conditions of desiccation. One of the most efficient approaches for understanding the mechanisms underlying resistance to dehydration-rehydration is to identify yeasts, which are stable under such treatments, and compare them with moderately resistant species and strains. In the current study, we investigated the resistance to dehydration-rehydration of six psychrotolerant yeast strains belonging to two species. All studied strains of Solicoccozyma terricola and Naganishia albida were found to be highly resistant to dehydration-rehydration. The viability of S. terricola str…

0106 biological sciencesBioengineeringBiology01 natural sciencesApplied Microbiology and BiotechnologyBiochemistryPermeabilityCell membrane03 medical and health sciences010608 biotechnologyYeastsGeneticsmedicinedehydration–rehydrationViability assayDesiccationCryptobiosis030304 developmental biology0303 health sciencesMicrobial ViabilityMicrobial ViabilityDehydrationCell MembraneMetabolismanhydrobiosisYeastanhydrobiosis; dehydration–rehydration; plasma membrane permeability; resistance to desiccation; Cell Membrane; Desiccation; Permeability; Yeasts; Dehydration; Microbial ViabilityMembranemedicine.anatomical_structureBiochemistryDesiccationplasma membrane permeabilityresistance to desiccationBiotechnologyYeast (Chichester, England)
researchProduct

Carotenoids and Some Other Pigments from Fungi and Yeasts †

2021

Carotenoids are an essential group of compounds that may be obtained by microbiological synthesis. They are instrumental in various areas of industry, medicine, agriculture, and ecology. The increase of carotenoids’ demand at the global market is now essential. At the moment, the production of natural carotenoids is more expensive than obtaining their synthetic forms, but several new approaches/directions on how to decrease this difference were developed during the last decades. This review briefly describes the information accumulated until now about the beneficial effects of carotenoids on human health protection, their possible application in the treatments of various diseases, and their…

0106 biological sciences0301 basic medicineEndocrinology Diabetes and Metabolismpigmentslcsh:QR1-502macromolecular substancesReviewBiologyyeast01 natural sciencesBiochemistrylcsh:Microbiology03 medical and health sciencesHuman health010608 biotechnologyMolecular BiologyBeneficial effectsCarotenoidchemistry.chemical_classificationbusiness.industrycarotenoidsfood and beveragesBiotechnology030104 developmental biologychemistryAgriculturebusinessMetabolites
researchProduct

Ex situ conservation and exploitation of fungi in Italy

2011

Abstract The kingdom Fungi comprises one of the most diverse groups of living organisms. They are numerous, ubiquitous and undertake many roles both independently and in association with other organisms. Fungi display a wide diversity of forms also mirrored by functional diversity and play such a dominant role in human society that they are arguably biotechnologically the most important group of organisms. Ex situ conservation of fungi, not only guarantees correct management and conservation of biodiversity, but also its exploitation in different fields. This article describes the major biological resource centres dealing with fungi in Italy and gives several examples of fungal exploitation…

Kingdom FungiResource (biology)Ecologymedia_common.quotation_subjectSettore BIO/02 - Botanica SistematicaBiodiversityyeastsex situ conservationPlant ScienceBiologyEx situ conservationbioremediation ex situ conservation exploitation fungi yeastsFunctional diversitybioremediationSettore BIO/03 - Botanica Ambientale E ApplicatafungiHuman societyhuman activitiesEcology Evolution Behavior and Systematicsbioremediation ex situ conservation exploitation fungi yeastsbioremediation; ex situ conservation; exploitation; fungi; yeastsexploitationDiversity (politics)media_common
researchProduct

Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events

2018

Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, th…

0301 basic medicineSaccharomyces cerevisiae ProteinsMonosaccharide Transport ProteinsEvolution030106 microbiologySaccharomyces cerevisiaeSaccharomyces cerevisiaeDehydration-rehydration03 medical and health sciencesGlucosidesBehavior and Systematicsα-Glucoside transporterMembrane proteinsGeneticsViability assayDesiccationLipid bilayerEcology Evolution Behavior and SystematicsMicrobial ViabilitySymportersbiologyStrain (chemistry)EcologyCell MembraneBiological TransportTransporterbiology.organism_classificationAnhydrobiosisYeastYeast030104 developmental biologyInfectious DiseasesBiochemistryMembrane proteinAnhydrobiosis; Dehydration-rehydration; Membrane proteins; Yeast; α-Glucoside transporter; Ecology Evolution Behavior and Systematics; Genetics; Infectious DiseasesIntracellular
researchProduct