0000000000336368
AUTHOR
Marcello Dalmonte
Topological Devil's staircase in atomic two-leg ladders
Abstract We show that a hierarchy of topological phases in one dimension—a topological Devil’s staircase—can emerge at fractional filling fractions in interacting systems, whose single-particle band structure describes a topological or a crystalline topological insulator. Focusing on a specific example in the BDI class, we present a field-theoretical argument based on bosonization that indicates how the system, as a function of the filling fraction, hosts a series of density waves. Subsequently, based on a numerical investigation of the low-lying energy spectrum, Wilczek–Zee phases, and entanglement spectra, we show that they are symmetry protected topological phases. In sharp contrast to t…
Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks
We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the $\nu=1/2$ fractional quantum Hall effect on the lattice. We address the robustness of the ground state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill,…