6533b833fe1ef96bd129c309

RESEARCH PRODUCT

Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks

Matthias GersterMatteo RizziSimone MontangeroSimone MontangeroSimone MontangeroMarcello DalmontePietro SilviPietro Silvi

subject

FOS: Physical sciencesQuantum entanglementQuantum Hall effectExpected value01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsQuantum spin Hall effectQuantum mechanics0103 physical sciencesElectronicEntropy (information theory)Optical and Magnetic Materials010306 general physicsBosonPhysicsQuantum PhysicsChern classStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter PhysicsQuantum Gases (cond-mat.quant-gas)cond-mat.quant-gas; cond-mat.quant-gas; Physics - Strongly Correlated Electrons; Quantum Physics; Electronic Optical and Magnetic Materials; Condensed Matter PhysicsFractional quantum Hall effectPhysics - Strongly Correlated ElectronsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)cond-mat.quant-gas

description

We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the $\nu=1/2$ fractional quantum Hall effect on the lattice. We address the robustness of the ground state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill, and Levin and Wen. The numerical results show that the topological contribution is compatible with the expected value $\gamma = 1/2$. Our results provide extensive evidence that FQH states are within reach of state-of-the-art cold atom experiments.

https://doi.org/10.1103/physrevb.96.195123