0000000000338025

AUTHOR

Gerhard Jung

0000-0002-6739-1603

Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions

Exact values for bulk and shear viscosity are important to characterize a fluid and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics (NEMD) simulations of steady-state systems with periodic boundary conditions -- one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions pro…

research product

Generalized Langevin dynamics: construction and numerical integration of non-Markovian particle-based models.

We propose a generalized Langevin dynamics (GLD) technique to construct non-Markovian particle-based coarse-grained models from fine-grained reference simulations and to efficiently integrate them. The proposed GLD model has the form of a discretized generalized Langevin equation with distance-dependent two-particle contributions to the self- and pair-memory kernels. The memory kernels are iteratively reconstructed from the dynamical correlation functions of an underlying fine-grained system. We develop a simulation algorithm for this class of non-Markovian models that scales linearly with the number of coarse-grained particles. Our GLD method is suitable for coarse-grained studies of syste…

research product

Frequency-dependent hydrodynamic interaction between two solid spheres

Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that the compressibility of the…

research product

Introducing Memory in Coarse-Grained Molecular Simulations

[Image: see text] Preserving the correct dynamics at the coarse-grained (CG) level is a pressing problem in the development of systematic CG models in soft matter simulation. Starting from the seminal idea of simple time-scale mapping, there have been many efforts over the years toward establishing a meticulous connection between the CG and fine-grained (FG) dynamics based on fundamental statistical mechanics approaches. One of the most successful attempts in this context has been the development of CG models based on the Mori–Zwanzig (MZ) theory, where the resulting equation of motion has the form of a generalized Langevin equation (GLE) and closely preserves the underlying FG dynamics. In…

research product

Correction: Generalized Langevin dynamics: construction and numerical integration of non-Markovian particle-based models.

Correction for ‘Generalized Langevin dynamics: construction and numerical integration of non-Markovian particle-based models’ by Gerhard Jung et al., Soft Matter, 2018, DOI: 10.1039/c8sm01817k.

research product

Wall slip and bulk yielding in soft particle suspensions

We simulate a dense athermal suspension of soft particles sheared between hard walls of a prescribed roughness profile, using a method that fully accounts for the fluid mechanics of the solvent between the particles, and between the particles and the walls, as well as for the solid mechanics of changes in the particle shapes. We thus capture the widely observed phenomenon of elastohydrodynamic wall slip, in which the soft particles become deformed in shear and lift away from the wall slightly, leaving behind a thin lubricating solvent layer of high shear. For imposed stresses below the material's bulk yield stress, we show the observed wall slip to be dominated by this thin solvent layer. A…

research product

Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations

Abstract The generalized Langevin equation is a model for the motion of coarse-grained particles where dissipative forces are represented by a memory term. The numerical realization of such a model requires the implementation of a stochastic delay-differential equation and the estimation of a corresponding memory kernel. Here we develop a new approach for computing a data-driven Markov model for the motion of the particles, given equidistant samples of their velocity autocorrelation function. Our method bypasses the determination of the underlying memory kernel by representing it via up to about twenty auxiliary variables. The algorithm is based on a sophisticated variant of the Prony metho…

research product

Frequency-Dependent Dielectric Polarizability of Flexible Polyelectrolytes in Electrolyte Solution: A Dissipative Particle Dynamics Simulation

research product

Iterative Reconstruction of Memory Kernels.

In recent years, it has become increasingly popular to construct coarse-grained models with non-Markovian dynamics to account for an incomplete separation of time scales. One challenge of a systematic coarse-graining procedure is the extraction of the dynamical properties, namely, the memory kernel, from equilibrium all-atom simulations. In this article, we propose an iterative method for memory reconstruction from dynamical correlation functions. Compared to previously proposed noniterative techniques, it ensures by construction that the target correlation functions of the original fine-grained systems are reproduced accurately by the coarse-grained system, regardless of time step and disc…

research product