6533b831fe1ef96bd1299ae5
RESEARCH PRODUCT
Frequency-dependent hydrodynamic interaction between two solid spheres
Gerhard JungFriederike Schmidsubject
Fluid Flow and Transfer ProcessesPhysics010304 chemical physicsStokesian dynamicsMechanical EngineeringComputational MechanicsFOS: Physical sciencesMechanicsCondensed Matter - Soft Condensed MatterStokes flowCondensed Matter Physics01 natural sciencesCompressible flow010305 fluids & plasmasMolecular dynamicsMechanics of Materials0103 physical sciencesCompressibilitySoft Condensed Matter (cond-mat.soft)Hydrodynamic theoryNavier–Stokes equationsBrownian motiondescription
Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that the compressibility of the fluid has a significant impact on frequency-dependent pair interactions. The predictions of the hydrodynamic theory are compared to molecular dynamics simulations of two solid spheres in a Lennard-Jones fluid. For this system we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.
year | journal | country | edition | language |
---|---|---|---|---|
2017-12-01 | Physics of Fluids |