Languages associated with saturated formations of groups
International audience; In a previous paper, the authors have shown that Eilenberg's variety theorem can be extended to more general structures, called formations. In this paper, we give a general method to describe the languages corresponding to saturated formations of groups, which are widely studied in group theory. We recover in this way a number of known results about the languages corresponding to the classes of nilpotent groups, soluble groups and supersoluble groups. Our method also applies to new examples, like the class of groups having a Sylow tower.; Dans un article précédent, les auteurs avaient montré comment étendre le théorème des variétés d'Eilenberg à des structures plus g…
On the -hypercentre of a finite group
The main objective of this paper is to study and describe the hypercentre of a finite group associated with saturated formations, in terms of some subgroup embedding properties related to permutability. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Formations of finite monoids and formal languages: Eilenberg’s variety theorem revisited
International audience; We present an extension of Eilenberg's variety theorem, a well-known result connecting algebra to formal languages. We prove that there is a bijective correspondence between formations of finite monoids and certain classes of languages, the formations of languages. Our result permits to treat classes of finite monoids which are not necessarily closed under taking submonoids, contrary to the original theory. We also prove a similar result for ordered monoids.; Nous présentons une extension du théorème des variétés d'Eilenberg, un résultat célèbre reliant l'algèbre à la théorie des langages formels. Nous montrons qu'il existe une correspondance bijective entre les form…
ON A PERMUTABILITY PROPERTY OF SUBGROUPS OF FINITE SOLUBLE GROUPS
The structure and embedding of subgroups permuting with the system normalizers of a finite soluble group are studied in the paper. It is also proved that the class of all finite soluble groups in which every subnormal subgroup permutes with the Sylow subgroups is properly contained in the class of all soluble groups whose subnormal subgroups permute with the system normalizers while this latter is properly contained in the class of all supersoluble groups.