0000000000341252

AUTHOR

Olga M. Mulina

0000-0003-0149-4914

Photoredox-catalyzed synthesis of N-unsubstituted enaminosulfones from vinyl azides and sulfinates

Abstract A metal-free visible light photoredox-catalyzed synthesis of N-unsubstituted enaminosulfones from vinyl azides and sodium sulfinates in moderate to high yields is described. The reaction proceeds in ethanol and uses eosin Y as a readily available photocatalyst in combination with nitrobenzene as an electron shuttle. Taking into account the number of steps involved (generation of the sulfonyl radical, its addition to the double bond, elimination of molecular nitrogen with formation of an iminyl radical, followed by its reduction and protonation) as well as the number of redox-active reaction partners involved, the selectivity of the process is quite impressive.

research product

A Photoredox-Catalyzed Four Component Reaction for the Atom-Efficient Synthesis of Complex Secondary Amines

The one-pot sulfonylation/aminoalkylation of styrene derivatives furnishing highly substituted gamma-sulfonylamines was accomplished through a photoredox-catalyzed four-component reaction. Apart from one molecule of water and the sodium counterion of the sulfinate, all atoms of the starting materials are transferred to the final product, rendering this process highly atom-efficient. The operationally simple protocol allows for the simultaneous formation of three new single bonds (C–S, C–N, and C–C) and therefore grants rapid access to structurally diverse products. The reaction proceeds under mild conditions in aqueous acetonitrile and shows a broad scope, including natural products and dru…

research product

Photoredox-Catalyzed Four-Component Reaction for the Synthesis of Complex Secondary Amines.

The one-pot sulfonylation/aminoalkylation of styrene derivatives furnishing substituted γ-sulfonylamines was accomplished through a photoredox-catalyzed four-component reaction. Besides one molecule of water and the sodium counterion of the sulfinate, all atoms of the starting materials are transferred to the final product, rendering this process highly atom-efficient. The operationally simple protocol allows for the simultaneous formation of three new single bonds (C-S, C-N, and C-C) and therefore grants rapid access to structurally diverse products.

research product