0000000000342366
AUTHOR
Asaf Kay
Structural sensitivity of the spin Hall magnetoresistance in antiferromagnetic thin films
A. Ross and M.K. acknowledge support from the Graduate School of Excellence Materials Science in Mainz (Grant No.DFG/GSC 266). This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universitat Mainz (MPGC). A. Ross, R.L., and M.K. acknowledge support from the DFG Projects No. 423441604 and No. 403502522. R.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement FAST No. 752195. All authors from Mainz also acknowledge support from both MaHoJeRo (DAAD Spintronics network, Project No. 57334897), SPIN+X (DFG SFB TRR 173, Project No. A01) and KAUST (Grant No. OSR-2019-CRG8-4048.2). D.A.G.…
Propagation Length of Antiferromagnetic Magnons Governed by Domain Configurations.
Spintronics seeks to functionalize antiferromagnetic materials to develop memory and logic devices operating at terahertz speed and robust against external magnetic field perturbations. To be useful, such functionality needs to be developed in thin film devices. The key functionality of long-distance spin-transport has, however, so far only been reported in bulk single crystal antiferromagnets, while in thin films, transport has so far been limited to a few nanometers. In this work, we electrically achieve a long-distance propagation of spin-information in thin films of the insulating antiferromagnet hematite. Through transport and magnetic imaging, we demonstrate a strong correlation betwe…
Magnon transport in the presence of antisymmetric exchange in a weak antiferromagnet
The Dzyaloshinskii-Moriya interaction (DMI) is at the heart of many modern developments in the research field of spintronics. DMI is known to generate noncollinear magnetic textures, and can take two forms in antiferromagnets: homogeneous or inter-sublattice, leading to small, canted moments and inhomogeneous or intra-sublattice, leading to formation of chiral structures. In this work, we first determine the strength of the effective field created by the DMI, using SQUID based magnetometry and transport measurements, in thin films of the antiferromagnetic iron oxide hematite, $\alpha$-Fe$_2$O$_3$. We demonstrate that DMI additionally introduces reconfigurability in the long distance magnon …