0000000000343378

AUTHOR

Manabu Shiraiwa

0000-0003-2532-5373

showing 9 related works from this author

Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in th…

2017

Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS includi…

010504 meteorology & atmospheric sciencesRadicalInorganic chemistry010501 environmental sciencesMineral dustbehavioral disciplines and activities01 natural scienceschemistry.chemical_compoundKaolinitePhysical and Theoretical ChemistryIsoprene0105 earth and related environmental sciencesAerosolsAir PollutantsMineralsAqueous solutionAtmosphereWaterParticulatesDecompositionDeposition (aerosol physics)chemistryEnvironmental chemistryParticulate MatterPublic HealthReactive Oxygen SpeciesFaraday Discussions
researchProduct

Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs

2017

Atmospheric refrigerator increases the global transport and health risks of carcinogenic PAHs.

Atmospheric ScienceMultidisciplinary010504 meteorology & atmospheric sciencesPlanetary boundary layerEnvironmental StudiesSciAdv r-articlesHumidity010501 environmental sciencesParticulatesAtmospheric dispersion modeling01 natural sciencesAerosolTroposphereReaction rate13. Climate actionEnvironmental chemistrypolycyclic compoundsParticleResearch ArticlesResearch Article0105 earth and related environmental sciencesScience Advances
researchProduct

Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules

2019

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formatio…

ChinaFine particulateoxidationRadicalvolatility010501 environmental sciences01 natural scienceschemistry.chemical_compoundEnvironmental ChemistryMoleculemultiphase chemistryChemical compositionRelative species abundanceFinlandIsoprene0105 earth and related environmental sciencesNaphthaleneAerosolsAir Pollutantsmechanismshydroxyl radicalsGeneral Chemistry15. Life on landParticulateschemistry13. Climate actionBeijingEnvironmental chemistryupper troposphereoxidized moleculesmassParticulate Matterchemical-compositionsecondary organic aerosolAEROSSOL
researchProduct

Aerosol Health Effects from Molecular to Global Scales.

2017

Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epide…

medicine.medical_specialty010504 meteorology & atmospheric sciencesIndoor bioaerosolAir pollution010501 environmental sciencesmedicine.disease_cause01 natural sciencesAir PollutionmedicineEnvironmental ChemistryAir quality index0105 earth and related environmental sciencesAerosolsAir PollutantsPublic healthGeneral ChemistryParticulates3. Good healthAerosolEpidemiologic StudiesDeposition (aerosol physics)13. Climate actionEnvironmental chemistryAtmospheric pollutantsEnvironmental scienceParticulate MatterEnvironmental sciencetechnology
researchProduct

General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano …

2011

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…

Atmospheric ScienceEuropean aerosol010504 meteorology & atmospheric sciencesaerosolAerosol radiative forcingClimateclouds010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:Chemistry/dk/atira/pure/sustainabledevelopmentgoals/climate_actionAerosol cloud11. SustainabilitySDG 13 - Climate Actionddc:550particle propertiesEnvironmental policysaturation vapor-pressureschemical-transport modelMiljövetenskapair qualitylcsh:QC1-999General Circulation Model/dk/atira/pure/subjectarea/asjc/1900/1902EUCAARIEELS - Earth Environmental and Life SciencesION-INDUCED NUCLEATIONChemical transport modelMeteorologyEarth & EnvironmentEnergy / Geological Survey NetherlandsSIMULATION CHAMBER SAPHIRnuclei number concentrationSECONDARY ORGANIC AEROSOLpure component propertiesAir quality indexEnvironmental quality0105 earth and related environmental sciencesPARTICLE FORMATION EVENTSAtmosphärische Spurenstoffe[CHIM.CATA]Chemical Sciences/CatalysisCAS - Climate Air and Sustainability[SDE.ES]Environmental Sciences/Environmental and SocietyFalconAerosollcsh:QD1-99913. Climate actionmixed-phase cloudsEnvironmental scienceatmospheric sulfuric-acidEnvironmental Scienceslcsh:Physics
researchProduct

Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide

2017

The allergenic potential of airborne proteins may be enhanced via post-translational modification induced by air pollutants like ozone (O3) and nitrogen dioxide (NO2). The molecular mechanisms and kinetics of the chemical modifications that enhance the allergenicity of proteins, however, are still not fully understood. Here, protein tyrosine nitration and oligomerization upon simultaneous exposure of O3 and NO2 were studied in coated-wall flow-tube and bulk solution experiments under varying atmospherically relevant conditions (5–200 ppb O3, 5–200 ppb NO2, 45–96% RH), using bovine serum albumin as a model protein. Generally, more tyrosine residues were found to react via the nitration pathw…

Air PollutantsOzone010504 meteorology & atmospheric sciencesbiologyAtmosphereNitrogen DioxideKineticsProteins010501 environmental sciences01 natural sciencesOligomerchemistry.chemical_compoundOzonechemistryNitrationEnvironmental chemistrybiology.proteinProtein oligomerizationNitrogen dioxideTropospheric ozonePhysical and Theoretical ChemistryBovine serum albumin0105 earth and related environmental sciencesFaraday Discussions
researchProduct

Reactive species formed upon interaction of water with fine particulate matter from remote forest and polluted urban air

2020

Interaction of water with fine particulate matter leads to the formation of reactive species (RS) that may influence the aging, properties, and health effects of atmospheric aerosols. In this study, we explore the RS yields of fine PM from remote forest (Hyytiälä, Finland) and polluted urban air (Mainz, Germany and Beijing, China) and relate these yields to different chemical constituents and reaction mechanisms. Ultrahigh-resolution mass spectrometry was used to characterize organic aerosol composition, electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique was used to determine the concentrations •OH, O2•−, and carbon- or oxygen-centered organic radicals, …

Reaction mechanism010504 meteorology & atmospheric sciencesFine particulateRadicalchemistry.chemical_element010501 environmental sciencesMass spectrometry01 natural scienceslaw.inventionchemistry13. Climate actionlawEnvironmental chemistry11. SustainabilityEnvironmental scienceAerosol compositionSpectroscopyElectron paramagnetic resonanceCarbon0105 earth and related environmental sciences
researchProduct

Characterization and differentiation of rock varnish types from different environments by microanalytical techniques

2017

© 2017 Elsevier B.V. We investigated rock varnishes collected from several locations and environments worldwide by a broad range of microanalytical techniques. These techniques were selected to address the challenges posed by the chemical and structural complexity within the micrometer- to nanometer-sized structures in these geological materials. Femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS), scanning transmission X-ray microscopy-near edge X-ray adsorption fine structure spectroscopy (STXM-NEXAFS) in combination with scanning electron microscopy (SEM) of focused ion beam (FIB) ultra-thin (100–200 nm) sections, conventional and polarization microscop…

Geochemistry & Geophysics010504 meteorology & atmospheric sciencesScanning electron microscopeVarnishAnalytical chemistryMineralogyfs LA-ICP-MSRock varnish010502 geochemistry & geophysicsMass spectrometry01 natural sciencesFocused ion beamPhysical Geography and Environmental GeoscienceGeochemistry and PetrologySpectroscopy0105 earth and related environmental sciencesRare-earth elementDesert varnishDesert varnishSTXM-NEXAFSVarnish typesGeologyCharacterization (materials science)GeochemistryCategorizationvisual_artSEMvisual_art.visual_art_mediumEPRGeology
researchProduct

Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals

2017

Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl ra…

0301 basic medicineHydroxyl radicals010504 meteorology & atmospheric sciencesStereochemistryRadicalPeptideTripeptideProtein oxidation01 natural sciencesBiochemistryAnalytical Chemistry03 medical and health sciencesAspartic acidOxidationBovine serum albuminAmino Acids0105 earth and related environmental scienceschemistry.chemical_classificationAlanineChromatographybiologyHydroxyl RadicalProteinsAmino acidHPLC-MS030104 developmental biologychemistrybiology.proteinPeptidesReactive Oxygen SpeciesAmino acid analysisOxidation-ReductionResearch PaperAnalytical and Bioanalytical Chemistry
researchProduct