6533b7d9fe1ef96bd126cd61

RESEARCH PRODUCT

Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene

Christopher J. KampfChristopher J. KampfUlrich PöschlHaijie TongJoanna SocorroPascale S. J. LakeyWilliam H. BruneThomas BerkemeierAndrea M. ArangioManabu ShiraiwaManabu Shiraiwa

subject

010504 meteorology & atmospheric sciencesRadicalInorganic chemistry010501 environmental sciencesMineral dustbehavioral disciplines and activities01 natural scienceschemistry.chemical_compoundKaolinitePhysical and Theoretical ChemistryIsoprene0105 earth and related environmental sciencesAerosolsAir PollutantsMineralsAqueous solutionAtmosphereWaterParticulatesDecompositionDeposition (aerosol physics)chemistryEnvironmental chemistryParticulate MatterPublic HealthReactive Oxygen Species

description

Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02–0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H2O2 with Fe2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

https://doi.org/10.1039/c7fd00023e