0000000000343405

AUTHOR

Andreas Marek

Core-Collapse Supernovae: Reflections and Directions

Core-collapse supernovae are among the most fascinating phenomena in astrophysics and provide a formidable challenge for theoretical investigation. They mark the spectacular end of the lives of massive stars and, in an explosive eruption, release as much energy as the sun produces during its whole life. A better understanding of the astrophysical role of supernovae as birth sites of neutron stars, black holes, and heavy chemical elements, and more reliable predictions of the observable signals from stellar death events are tightly linked to the solution of the long-standing puzzle how collapsing stars achieve to explode. In this article our current knowledge of the processes that contribute…

research product

New methods for approximating general relativity in numerical simulations of stellar core collapse

We review various approaches to approximating general relativistic effects in hydrodynamic simulations of stellar core collapse and post-bounce evolution. Different formulations of a modified Newtonian gravitational potential are presented. Such an effective relativistic potential can be used in an otherwise standard Newtonian hydrodynamic code. An alternative approximation of general relativity is the assumption of conformal flatness for the three-metric, and its extension by adding second post-Newtonian order terms. Using a code which evolves the coupled system of metric and fluid equations, we apply the various approximation methods to numerically simulate axisymmetric models for the col…

research product

Core-collapse supernovae: Reflections and directions

Core-collapse supernovae are among the most fascinating phenomena in astrophysics and provide a formidable challenge for theoretical investigation. They mark the spectacular end of the lives of massive stars and, in an explosive eruption, release as much energy as the sun produces during its whole life. A better understanding of the astrophysical role of supernovae as birth sites of neutron stars, black holes, and heavy chemical elements, and more reliable predictions of the observable signals from stellar death events are tightly linked to the solution of the longstanding puzzle of how collapsing stars achieve explosion. In this article our current knowledge of the processes that contribut…

research product