0000000000343810

AUTHOR

Toby Opferkuch

showing 8 related works from this author

Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves

2018

We explore gravitational wave signals arising from first-order phase transitions occurring in a secluded hidden sector, allowing for the possibility that the hidden sector may have a different temperature than the Standard Model sector. We present the sensitivity to such scenarios for both current and future gravitational wave detectors in a model-independent fashion. Since secluded hidden sectors are of particular interest for dark matter models at the MeV scale or below, we pay special attention to the reach of pulsar timing arrays. Cosmological constraints on light degrees of freedom restrict the number of sub-MeV particles in a hidden sector, as well as the hidden sector temperature. Ne…

PhysicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsGravitational waveDark matterHigh Energy Physics::PhenomenologyDegrees of freedom (statistics)FOS: Physical sciencesAstronomy and AstrophysicsObservablehep-ph01 natural sciencesStandard ModelHidden sectorHigh Energy Physics - PhenomenologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)Pulsar0103 physical sciencesastro-ph.COAstrophysics - Cosmology and Nongalactic AstrophysicsGauge symmetryParticle Physics - Phenomenology
researchProduct

Cuckoo's Eggs in Neutron Stars: Can LIGO Hear Chirps from the Dark Sector?

2018

We explore in detail the possibility that gravitational wave signals from binary inspirals are affected by a new force that couples only to dark matter particles. We discuss the impact of both the new force acting between the binary partners as well as radiation of the force carrier. We identify numerous constraints on any such scenario, ultimately concluding that observable effects on the dynamics of binary inspirals due to such a force are not possible if the dark matter is accrued during ordinary stellar evolution. Constraints arise from the requirement that the astronomical body be able to collect and bind at small enough radius an adequate number of dark matter particles, from the requ…

Nuclear and High Energy PhysicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitymedia_common.quotation_subjectgr-qcDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsStellar evolutionmedia_commonParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsStar formationGravitational wavehep-exGeneral Relativity and CosmologyFifth forcehep-phCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyNeutron starBeyond Standard Modelastro-ph.COlcsh:QC770-798Particle Physics - ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Dark matter, destroyer of worlds: neutrino, thermal, and existential signatures from black holes in the Sun and Earth

2020

Dark matter can be captured by celestial objects and accumulate at their centers, forming a core of dark matter that can collapse to a small black hole, provided that the annihilation rate is small or zero. If the nascent black hole is big enough, it will grow to consume the star or planet. We calculate the rate of dark matter accumulation in the Sun and Earth, and use their continued existence to place novel constraints on high mass asymmetric dark matter interactions. We also identify and detail less destructive signatures: a newly-formed black hole can be small enough to evaporate via Hawking radiation, resulting in an anomalous heat flow emanating from Earth, or in a flux of high-energy…

Astrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesFlux01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Planet0103 physical sciencesThermalParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicshep-ex010308 nuclear & particles physicsAstronomyhep-phAstronomy and AstrophysicsObservableBlack holeHigh Energy Physics - Phenomenology13. Climate actionNeutrinoAstrophysics - High Energy Astrophysical PhenomenaParticle Physics - ExperimentHawking radiationJournal of Cosmology and Astroparticle Physics
researchProduct

The ultraviolet landscape of two-Higgs doublet models

2018

We study the predictions of generic ultraviolet completions of two-Higgs doublet models. We assume that at the matching scale between the two-Higgs doublet model and a ultraviolet complete theory -- which can be anywhere between the TeV and the Planck scale -- arbitrary but perturbative values for the quartic couplings are present. We evaluate the couplings down from the matching scale to the weak scale and study the predictions for the scalar mass spectrum. In particular, we show the importance of radiative corrections which are essential for both an accurate Higgs mass calculation as well as determining the stability of the electroweak vacuum. We study the relation between the mass splitt…

Particle physicsPhysics and Astronomy (miscellaneous)Scale (ratio)Scalar (mathematics)FOS: Physical scienceslcsh:Astrophysics01 natural sciencesStability (probability)High Energy Physics - Phenomenology (hep-ph)Quartic functionlcsh:QB460-4660103 physical sciencesRadiative transferddc:530lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Physics010308 nuclear & particles physicsPhysicsElectroweak interactionHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyMass spectrumHiggs bosonlcsh:QC770-798Regular Article - Theoretical Physics
researchProduct

The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection

2020

We revisit the physics of neutrino magnetic moments, focusing in particular on the case where the right-handed, or sterile, neutrinos are heavier (up to several MeV) than the left-handed Standard Model neutrinos. The discussion is centered around the idea of detecting an upscattering event mediated by a transition magnetic moment in a neutrino or dark matter experiment. Considering neutrinos from all known sources, as well as including all available data from XENON1T and Borexino, we derive the strongest up-to-date exclusion limits on the active-to-sterile neutrino transition magnetic moment. We then study complementary constraints from astrophysics and cosmology, performing, in particular,…

PhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsDark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and Astrophysicshep-phAstrophysics01 natural sciencesCosmologyStandard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)13. Climate action0103 physical sciencesLeptoquarkHigh Energy Physics::ExperimentNeutrinoBorexinoParticle Physics - Phenomenology
researchProduct

Ricci Reheating

2019

We present a model for viable gravitational reheating involving a scalar field directly coupled to the Ricci curvature scalar. Crucial to the model is a period of kination after inflation, which causes the Ricci scalar to change sign thus inducing a tachyonic effective mass $m^{2} \propto -H^2$ for the scalar field. The resulting tachyonic growth of the scalar field provides the energy for reheating, allowing for temperatures high enough for thermal leptogenesis. Additionally, the required period of kination necessarily leads to a blue-tilted primordial gravitational wave spectrum with the potential to be detected by future experiments. We find that for reheating temperatures $T_{\rm RH} \l…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsGeneral Relativity and Cosmologygr-qcFOS: Physical sciencesAstronomy and Astrophysicshep-phAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesastro-ph.CO010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsParticle Physics - Phenomenology
researchProduct

Gravitational Imprints of Flavor Hierarchies

2020

The mass hierarchy among the three generations of quarks and charged leptons is one of the greatest mysteries in particle physics. In various flavor models, the origin of this phenomenon is attributed to a series of hierarchical spontaneous symmetry breakings, most of which are beyond the reach of particle colliders. We point out that the observation of a multi-peaked stochastic gravitational wave signal from a series of cosmological phase transitions could well be a unique probe of the mechanism behind flavor hierarchies. To illustrate this point, we show how near future ground- and space-based gravitational wave observatories could detect up to three peaks in the recently proposed $PS^3$ …

QuarkPhase transitionAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentGravitationHigh Energy Physics - Experiment (hep-ex)Theoretical physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPoint (geometry)010306 general physicsParticle Physics - PhenomenologyPhysicsSeries (mathematics)Gravitational wavehep-exhep-phSymmetry (physics)High Energy Physics - Phenomenologyastro-ph.COParticle Physics - ExperimentLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

N-loop running should be combined with N-loop matching

2018

We investigate the high-scale behaviour of Higgs sectors beyond the Standard Model, pointing out that the proper matching of the quartic couplings before applying the renormalisation group equations (RGEs) is of crucial importance for reliable predictions at larger energy scales. In particular, the common practice of leading-order parameters in the RGE evolution is insufficient to make precise statements on a given model's UV behaviour, typically resulting in uncertainties of many orders of magnitude. We argue that, before applying N-loop RGEs, a matching should even be performed at N-loop order in contrast to common lore. We show both analytical and numerical results where the impact is si…

[PHYS]Physics [physics]High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)PhysicsHigh Energy Physics::PhenomenologyFOS: Physical sciencesddc:530
researchProduct