0000000000346339
AUTHOR
Kerstin U. Ludwig
Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia
Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment,…
Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468). We observed a genome-wide significant effect (p < 1 × 10…
Genome-wide Association Study and Meta-Analysis Identify ISL1 as Genome-wide Significant Susceptibility Gene for Bladder Exstrophy
The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and is thought to result from aberrant embryonic morphogenesis of the cloacal membrane and the urorectal septum. The most common form of BEEC is isolated classic bladder exstrophy (CBE). To identify susceptibility loci for CBE, we performed a genome-wide association study (GWAS) of 110 CBE patients and 1,177 controls of European origin. Here, an association was found with a region of approximately 220kb on chromosome 5q11.1. This region harbors the ISL1 (ISL LIM homeobox 1) gene. Multiple markers in this region showed evidence for association with CBE, including 84 markers with…
Genome-wide Association Study of Alcohol Dependence
Context Alcohol dependence is a serious and common public health problem. It is well established that genetic factors play a major role in the development of this disorder. Identification of genes that contribute to alcohol dependence will improve our understanding of the mechanisms that underlie this disorder. Objective To identify susceptibility genes for alcohol dependence through a genome-wide association study (GWAS) and a follow-up study in a population of German male inpatients with an early age at onset. Design The GWAS tested 524 396 single-nucleotide polymorphisms (SNPs). All SNPs with P −4 were subjected to the follow-up study. In addition, nominally significant SNPs from genes t…
Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort
The work conducted at the WTCHG was supported by Wellcome Trust grants [076566/Z/05/Z] and [075491/Z/04]; the work in Zurich partly by an SNSF grant [32-108130]. We also thank MAF (Mutation Analysis core Facility) at the Karolinska Institute, Novum, Huddinge. The French part of the project was funded by Agence Nationale de la Recherche (ANR-06-NEURO-019-01 GENEDYS) and Ville de Paris. S Paracchini is a Royal Society University Research Fellow. D Czamara was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) within the framework of the Munich Cluster for Systems Neurology (EXC 1010 SyNergy). Dyslexia is one of the most common childhood disorders with a prevalence o…
Genome Wide Association Scan identifies new variants associated with a cognitive predictor of dyslexia
AbstractDevelopmental dyslexia (DD) is one of the most prevalent learning disorders among children and is characterized by deficits in different cognitive skills, including reading, spelling, short term memory and others. To help unravel the genetic basis of these skills, we conducted a Genome Wide Association Study (GWAS), including nine cohorts of reading-impaired and typically developing children of European ancestry, recruited across different countries (N=2,562-3,468).We observed a genome-wide significant effect (p<1×10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2 withinMIR924HG (micro-RNA 924 host gene;p= 4.73×10−9), and a suggestive association on 8q1…
Identification of loci of functional relevance to Barrett's esophagus and esophageal adenocarcinoma: Cross-referencing of expression quantitative trait loci data from disease-relevant tissues with genetic association data.
Esophageal adenocarcinoma (EA) and its precancerous condition Barrett's esophagus (BE) are multifactorial diseases with rising prevalence rates in Western populations. A recent meta-analysis of genome-wide association studies (GWAS) data identified 14 BE/EA risk loci located in non-coding genomic regions. Knowledge about the impact of non-coding variation on disease pathology is incomplete and needs further investigation. The aim of the present study was (i) to identify candidate genes of functional relevance to BE/EA at known risk loci and (ii) to find novel risk loci among the suggestively associated variants through the integration of expression quantitative trait loci (eQTL) and genetic…
Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia
Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment,…