0000000000346346
AUTHOR
Yves Chaix
Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia
Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment,…
Predictors of developmental dyslexia in European orthographies with varying complexity
Background: The relationship between phoneme awareness, rapid automatized naming (RAN), verbal short-term/working memory (ST/WM) and diagnostic category is investigated in control and dyslexic children, and the extent to which this depends on orthographic complexity. Methods: General cognitive, phonological and literacy skills were tested in 1,138 control and 1,114 dyslexic children speaking six different languages spanning a large range of orthographic complexity (Finnish, Hungarian, German, Dutch, French, English). Results: Phoneme deletion and RAN were strong concurrent predictors of developmental dyslexia, while verbal ST/WM and general verbal abilities played a comparatively minor role…
Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort
The work conducted at the WTCHG was supported by Wellcome Trust grants [076566/Z/05/Z] and [075491/Z/04]; the work in Zurich partly by an SNSF grant [32-108130]. We also thank MAF (Mutation Analysis core Facility) at the Karolinska Institute, Novum, Huddinge. The French part of the project was funded by Agence Nationale de la Recherche (ANR-06-NEURO-019-01 GENEDYS) and Ville de Paris. S Paracchini is a Royal Society University Research Fellow. D Czamara was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) within the framework of the Munich Cluster for Systems Neurology (EXC 1010 SyNergy). Dyslexia is one of the most common childhood disorders with a prevalence o…
Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia
Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment,…
Sporadic and Familial Variants in NF1: An Explanation of the Wide Variability in Neurocognitive Phenotype?
Background: Cognitive impairment is the most common neurological manifestation in NF1 and occurs in 30-70% of NF1 cases. The onset and severity of each specific cognitive deficit varies greatly from child to child, with no apparent external causes. The wide variability of phenotype is the most complex aspect in terms of management and care. Despite multiple research, the mechanism underlying the high heterogeneity in NF1 has not yet been elucidated. While many studies have focused on the effects of specific and precise genetic mutations on the NF1 phenotype, little has been done on the impact of NF1 transmission (sporadic vs. familial cases). We used a complete neuropsychological evaluation…