0000000000346480

AUTHOR

Xavier Brenachot

Role of polysialic acid (PSA) in the control of food intake and body weight

Hypothalamus plays a major role in the regulation of energy homeostasis by the presence of neural circuits controlling food intake. These circuits are plastic and can be rewired during adulthood. We hypothesized that synaptic plasticity can occur during physiological conditions. We have shown that synaptic contact on hypothalamic anorexigen POMC neurons are rewired in mouse upon high fat diet (HFD). This synaptic process is mandatory to adjust energy intake and requires the glycan PSA (polysialic acid). PSA promotes synaptic plasticity in the brain by the weakening of cell-to-cell interaction by addition on NCAM (neural cell adhesion molecule). We hypothesized that a defect in brain synapti…

research product

Détection cérébrale du glucose, plasticité neuronale et métabolisme énergétique

Resume L’apport d’energie est, dans la plupart des cas extremement, bien controle et est ajuste aux depenses d’energie d’un individu donne, c’est ce que l’on nomme l’homeostasie energetique. Cet equilibre repose en grande partie sur la capacite du systeme nerveux central a evaluer le statut energetique de l’organisme, en integrant differents signaux provenant de la peripherie dont le glucose. Cette revue porte sur les decouvertes recentes concernant l’identification des differents mecanismes cellulaires et moleculaires, des types cellulaires et de leur phenotype, des reseaux neuronaux et de leur plasticite. Ainsi il est maintenant etabli qu’il existe differents types de neurones repondant, …

research product

Hypothalamic Apelin/Reactive Oxygen Species Signaling Controls Hepatic Glucose Metabolism in the Onset of Diabetes

Aims: We have previously demonstrated that central apelin is implicated in the control of peripheral glycemia, and its action depends on nutritional (fast versus fed) and physiological (normal versus diabetic) states. An intracerebroventricular (icv) injection of a high dose of apelin, similar to that observed in obese/diabetic mice, increase fasted glycemia, suggesting (i) that apelin contributes to the establishment of a diabetic state, and (ii) the existence of a hypothalamic to liver axis. Using pharmacological, genetic, and nutritional approaches, we aim at unraveling this system of regulation by identifying the hypothalamic molecular actors that trigger the apelin effect on liver gluc…

research product

The histone acetyltransferase MOF activates hypothalamic polysialylation to prevent diet-induced obesity in mice

Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented…

research product

Role of polysialic acid (PSA) in the control of food intake and body weight

Hypothalamus plays a major role in the regulation of energy homeostasis by the presence of neural circuits controlling food intake. These circuits are plastic and can be rewired during adulthood. We hypothesized that synaptic plasticity can occur during physiological conditions. We have shown that synaptic contact on hypothalamic anorexigen POMC neurons are rewired in mouse upon high fat diet (HFD). This synaptic process is mandatory to adjust energy intake and requires the glycan PSA (polysialic acid). PSA promotes synaptic plasticity in the brain by the weakening of cell-to-cell interaction by addition on NCAM (neural cell adhesion molecule). We hypothesized that a defect in brain synapti…

research product

Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice

International audience; Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opio…

research product

Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis

Fil: Chrétien, Chloé. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Fenech, Claire. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Liénard, Fabienne. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Grall, Sylvie. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Chevalier, Charlène. University of …

research product

Brain Control of Plasma Cholesterol Involves Polysialic Acid Molecules in the Hypothalamus

IF 3.566; International audience; The polysialic acid (PSA) is a large glycan that is added to cell-surface proteins during their post-translational maturation. In the brain, PSA modulates distances between cells and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved in many aspects of energy balance including food intake, osmoregulation, circadian rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the regulation of plasma cholesterol levels and distribution. We report that HFD consumption in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol. Although plasma VLDL-cholesterol was normalized withi…

research product

Hypothalamic eIF2 alpha signaling regulates food intake

International audience; The reversible phosphorylation of the a subunit of eukaryotic initiation factor 2 (eIF2 alpha) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2 alpha kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demo…

research product

Lack of Hypothalamus Polysialylation Inducibility Correlates With Maladaptive Eating Behaviors and Predisposition to Obesity

This original research article (6 p.) is part of the research topic . Specialty section: This article was submitted to Neuroenergetics, Nutrition and Brain Health, a section of the journal Frontiers in Nutrition.; International audience; High variability exists in individual susceptibility to develop overweight in an obesogenic environment and the biological underpinnings of this heterogeneity are poorly understood. In this brief report, we show in mice that the vulnerability to diet-induced obesity is associated with low level of polysialic acid-neural cell adhesion molecule (PSA-NCAM), a factor of neural plasticity, in the hypothalamus. As we previously shown that reduction of hypothalami…

research product