0000000000347127

AUTHOR

M. A. El-yakoubi

showing 6 related works from this author

Evidence for Strange-Quark Contributions to the Nucleon’s Form Factors atQ2=0.108   (GeV/c)2

2005

We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of ${Q}^{2}=0.108\text{ }(\mathrm{GeV}/c{)}^{2}$ and at a forward electron scattering angle of $30\ifmmode^\circ\else\textdegree\fi{}l{\ensuremath{\theta}}_{e}l40\ifmmode^\circ\else\textdegree\fi{}$. The measured asymmetry is ${A}_{LR}(\stackrel{\ensuremath{\rightarrow}}{e}p)=[\ensuremath{-}1.36\ifmmode\pm\else\textpm\fi{}0.29(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.13(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$. The expectation from the standard model as…

PhysicsStrange quarkParticle physics010308 nuclear & particles physicsHadronGeneral Physics and AstronomyElementary particleFermionStrangeness01 natural sciencesBaryon0103 physical sciences010306 general physicsNucleonLeptonPhysical Review Letters
researchProduct

A Monte-Carlo method to analyze the electromagnetic form factors of the nucleon

2007

Parity violating elastic electron-nucleon scattering allows to determine the vector stangeness content of the nucleon. The final uncertainty on the strange form factors is limited, among other parameters, by the uncertainty on the electromagnetic form factors. These are usually fitted with a functional form constrained by boundary conditions at Q 2= 0 and at large Q 2. These conditions induce huge correlations between parameters which are not taken into account to full extent by purely statistical methods. We describe here a Monte-Carlo method which accounts for correlations between parameters to all orders. We also propose a method for taking into account some systematical errors induced b…

PhysicsScatteringMonte Carlo methodParity (physics)Boundary value problemStatistical physicsNucleon
researchProduct

Measurement of the parity violating asymmetry in the quasielastic electron-deuteron scattering and improved determination of the magnetic strange for…

2016

A new measurement of the parity-violating asymmetry in the electron-deuteron quasielastic scattering for backward angles at $⟨{Q}^{2}⟩=0.224\text{ }\text{ }{(\mathrm{GeV}/c)}^{2}$, obtained in the A4 experiment at the Mainz Microtron accelerator (MAMI) facility, is presented. The measured asymmetry is ${A}_{PV}^{d}=(\ensuremath{-}20.11\ifmmode\pm\else\textpm\fi{}0.8{7}_{\mathrm{stat}}\ifmmode\pm\else\textpm\fi{}\phantom{\rule{0ex}{0ex}}1.0{3}_{\mathrm{sys}})\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$. A combination of these data with the proton measurements of the parity-violating asymmetry in the A4 experiment yields a value for the effective isovector axial-vector form facto…

Particle physicsacceleratorparity: violation: asymmetrymedia_common.quotation_subjectLattice field theoryisovectorelectron deuteron: inelastic scatteringpolarized beamElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]form factor: axial-vector01 natural sciencesAsymmetryMainz Linac0103 physical sciencesdeuterium: targetradiative correctionelectron: beam010306 general physicsmedia_commonPhysicsQuasielastic scatteringIsovector010308 nuclear & particles physicsScatteringbackgroundlattice field theoryParity (physics)helicityanapoleHelicityelectron deuteron: scatteringexperimental results
researchProduct

Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the T…

2004

We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A$_\perp$, at two Q$^2$ values of \qsquaredaveragedlow (GeV/c)$^2$ and \qsquaredaveragedhighII (GeV/c)$^2$ and a scattering angle of $30^\circ < ��_e < 40^\circ$. The measured transverse asymmetries are A$_{\perp}$(Q$^2$ = \qsquaredaveragedlow (GeV/c)$^2$) = (\experimentalasymmetry alulowcorr $\pm$ \statisticalerrorlow$_{\rm stat}$ $\pm$ \combinedsyspolerrorlowalucor$_{\rm sys}$) $\times$ 10$^{-6}$ and A$_{\perp}$(Q$^2$ = \qsquaredaveragedhighII (GeV/c)$^2$) = (\experimentalasymme tryaluhighcorr $\pm$ \statisticalerrorhigh$_{\rm stat}$ $\pm$ \combinedsyspolerrorhi…

PhysicsElastic scatteringProton13.60.Fz 11.30.Er 13.40.Gp010308 nuclear & particles physicsScatteringElectric form factorGeneral Physics and AstronomyFOS: Physical sciencesInelastic scattering01 natural sciencesNuclear physicsScattering amplitudeAmplitude0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear Experiment
researchProduct

Measurement of Strange Quark Contributions to the Vector Form Factors of the Proton atQ2=0.22  (GeV/c)2

2009

A new measurement of the parity violating asymmetry in elastic electron scattering on hydrogen at backward angles and at a four momentum transfer of Q{sup 2}=0.22 (GeV/c){sup 2} is reported here. The measured asymmetry is A{sub LR}=(-17.23{+-}0.82{sub stat}{+-}0.89{sub syst})x10{sup -6}. The standard model prediction assuming no strangeness is A{sub 0}=(-15.87{+-}1.22)x10{sup -6}. In combination with previous results from measurements at forward angles, it is possible to disentangle for the first time the strange form factors at this momentum transfer, G{sub E}{sup s}=0.050{+-}0.038{+-}0.019 and G{sub M}{sup s}=-0.14{+-}0.11{+-}0.11.

PhysicsStrange quarkParticle physicsProton010308 nuclear & particles physicsHadronMomentum transferGeneral Physics and AstronomyElementary particleStrangeness01 natural sciencesBaryonNuclear physics0103 physical sciences010306 general physicsNucleonPhysical Review Letters
researchProduct

New Measurements of the Beam Normal Spin Asymmetries at Large Backward Angles with Hydrogen and Deuterium Targets

2017

International audience; New measurements of the beam normal single spin asymmetry in the electron elastic and quasielastic scattering on the proton and deuteron, respectively, at large backward angles and at ⟨Q2⟩=0.22  (GeV/c)2 and ⟨Q2⟩=0.35  ( GeV/c)2 are reported. The experimentally observed asymmetries are compared with the theoretical calculation of Pasquini and Vanderhaeghen [Phys. Rev. C 70, 045206 (2004).PRVCAN0556-281310.1103/PhysRevC.70.045206]. The agreement of the measurements with the theoretical calculations shows a dominance of the inelastic intermediate excited states of the nucleon, πN and the Δ resonance. The measurements explore a new, important parameter region of the exc…

Born approximationelectronProtonGeneral Physics and AstronomyElectronelectron nucleonInelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesResonance (particle physics)Nuclear physicsstatistical analysis0103 physical sciencesexcited stateBorn approximation010306 general physicsNuclear ExperimentSpin-½hydrogen: targetPhysicsQuasielastic scatteringexchange: two-photon010308 nuclear & particles physicsnucleoninelastic scatteringangular dependenceresonanceHigh Energy Physics::Experimentdeuteron: targetAtomic physicsNucleonspin: asymmetryexperimental resultsphoton: virtual
researchProduct