6533b838fe1ef96bd12a461a

RESEARCH PRODUCT

Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude

R. KunneY. ImaiS. KowalskiE. SchillingT. HammelK. AulenbacherJ. DiefenbachSanchez-lorente AS. BaunackC. WeinrichF. E. MaasVon Harrach DR. FrascariaG. WeberL. CapozzaJongmin LeeS. OngM. MorletKabuss EmB. GläserS. TaylorG. StephanD. SchwaabJ. ArvieuxR. SuleimanM. A. El-yakoubiJ VandewieleI. AltarevR. Kothe

subject

PhysicsElastic scatteringProton13.60.Fz 11.30.Er 13.40.Gp010308 nuclear & particles physicsScatteringElectric form factorGeneral Physics and AstronomyFOS: Physical sciencesInelastic scattering01 natural sciencesNuclear physicsScattering amplitudeAmplitude0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear Experiment

description

We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A$_\perp$, at two Q$^2$ values of \qsquaredaveragedlow (GeV/c)$^2$ and \qsquaredaveragedhighII (GeV/c)$^2$ and a scattering angle of $30^\circ < ��_e < 40^\circ$. The measured transverse asymmetries are A$_{\perp}$(Q$^2$ = \qsquaredaveragedlow (GeV/c)$^2$) = (\experimentalasymmetry alulowcorr $\pm$ \statisticalerrorlow$_{\rm stat}$ $\pm$ \combinedsyspolerrorlowalucor$_{\rm sys}$) $\times$ 10$^{-6}$ and A$_{\perp}$(Q$^2$ = \qsquaredaveragedhighII (GeV/c)$^2$) = (\experimentalasymme tryaluhighcorr $\pm$ \statisticalerrorhigh$_{\rm stat}$ $\pm$ \combinedsyspolerrorhighalucor$_{\rm sys}$) $\times$ 10$^{-6}$. The first errors denotes the statistical error and the second the systematic uncertainties. A$_\perp$ arises from the imaginary part of the two-photon exchange amplitude and is zero in the one-photon exchange approximation. From comparison with theoretical estimates of A$_\perp$ we conclude that $��$N-intermediate states give a substantial contribution to the imaginary part of the two-photon amplitude. The contribution from the ground state proton to the imaginary part of the two-photon exchange can be neglected. There is no obvious reason why this should be different for the real part of the two-photon amplitude, which enters into the radiative corrections for the Rosenbluth separation measurements of the electric form factor of the proton.

https://dx.doi.org/10.48550/arxiv.nucl-ex/0410013