0000000000348453
AUTHOR
Randazzo
Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles
A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the resul…
Positive Sulfate Sulfur Isotope Excursion Indicates Large-Scale Pyrite Burial and Marine Anoxia during the End–Triassic Mass Extinction
The late Rhaetian–early Hettangian transition is characterised by the emplacement of Central Atlantic magmatic province and associated climatic effects, coincident with a severe biotic crisis (~201.5 Ma). The oxygen deficiency in the ocean realm is possibly linked to this significant loss in marine biodiversity. However, direct evidence of contemporaneous development of marine anoxia on a global scale has been lacking and the relationship between oxygen and extinction is unclear. Here we report carbonate-associated sulfate δ34S data from three sections across the Late Triassic–Early Jurassic transition. We find synchronous large positive δ34S shifts with a magnitude of >10‰ in the latest…
Expansion cone for the 3-inch PMTs of the KM3NeT optical modules
[EN] Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average…