0000000000349027

AUTHOR

Paulius Ruzgys

0000-0002-4501-4073

showing 2 related works from this author

miR-20b and miR-451a Are Involved in Gastric Carcinogenesis through the PI3K/AKT/mTOR Signaling Pathway: Data from Gastric Cancer Patients, Cell Line…

2020

Gastric cancer (GC) is one of the most common and lethal gastrointestinal malignancies worldwide. Many studies have shown that development of GC and other malignancies is mainly driven by alterations of cellular signaling pathways. MicroRNAs (miRNAs) are small noncoding molecules that function as tumor-suppressors or oncogenes, playing an essential role in a variety of fundamental biological processes. In order to understand the functional relevance of miRNA dysregulation, studies analyzing their target genes are of major importance. Here, we chose to analyze two miRNAs, miR-20b and miR-451a, shown to be deregulated in many different malignancies, including GC. Deregulated expression of miR…

MaleCell signalingAntagonists & inhibitorsCaveolin 1ApoptosisCatalysisTuberous Sclerosis Complex 1 ProteinArticleInorganic Chemistrylcsh:ChemistryMicePhosphatidylinositol 3-KinasesStomach NeoplasmsCell Line TumormicroRNAPTENAnimalsHumans616.33-006.6 [udc]Physical and Theoretical ChemistryMolecular BiologyProtein kinase Blcsh:QH301-705.5SpectroscopyPI3K/AKT/mTOR pathwaybiologyTOR Serine-Threonine Kinasesgastric cancerOrganic ChemistryPTEN PhosphohydrolaseAntagomirsGeneral MedicineStomach neoplasms ; genetics ; MicroRNAs ; genetics ; Phosphoinositide-3 Kinase Inhibitors ; Phosphatidylinositol 3-Kinase ; metabolism ; Proto-Oncogene Proteins c-akt ; antagonists&inhibitors ; Proto-Oncogene Proteins c-akt ; metabolism ; TOR Serine-Threonine Kinases ; antagonists&inhibitors ; TOR Serine-Threonine Kinases ; metabolism ; Signal transduction ; drug effects ; Disease models animal ; MicemiR-451aComputer Science ApplicationsmicroRNAsDisease Models Animallcsh:Biology (General)lcsh:QD1-999biology.proteinCancer researchFemalemiR-20bSignal transductionCarrier ProteinsProto-Oncogene Proteins c-aktTXNIPSignal TransductionPI3K/AKT/mTOR signaling pathwayInternational Journal of Molecular Sciences
researchProduct

FRET-based method for evaluation of the efficiency of reversible and irreversible sonoporation.

2017

It is widely known that not all of the treated cells survive after introduction of exogenous molecules via any physical method. Therefore, it is important to develop methods that would allow simultaneous evaluation of both molecular delivery efficiency and cell viability. This study presents Forster resonance energy transfer (FRET)-based method that allows molecular transfer and cell viability evaluation in a single measurement by employing two common fluorescent dyes, namely, ethidium bromide and trypan blue. The method has been validated using cell sonoporation. The FRET-based method allows the efficiency evaluation of both reversible and irreversible sonoporation in a single experiment. …

0301 basic medicineMaterials scienceCell SurvivalSonicationSingle measurementBiomedical EngineeringCHO CellsBiomaterials03 medical and health scienceschemistry.chemical_compoundSonicationCricetulusEthidiumFluorescence Resonance Energy TransferAnimalsHumansViability assayFluorescent DyesTrypan BlueFluorescenceAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials030104 developmental biologyFörster resonance energy transferchemistryBiophysicsTrypan blueEthidium bromideSonoporationJournal of biomedical optics
researchProduct