0000000000349179

AUTHOR

Elisabeth Rieger

Fast Access to Amphiphilic Multiblock Architectures by the Anionic Copolymerization of Aziridines and Ethylene Oxide.

An ideal system for stimuli-responsive and amphiphilic (block) polymers would be the copolymerization of aziridines with epoxides. However, to date, no copolymerization of these two highly strained three-membered heterocycles had been achieved. Herein, we report the combination of the living oxy- and azaanionic ring-opening polymerization of ethylene oxide (EO) and sulfonamide-activated aziridines. In a single step, well-defined amphiphilic block copolymers are obtained by a one-pot copolymerization. Real-time 1H NMR spectroscopy revealed the highest difference in reactivity ratios ever reported for an anionic copolymerization (with r1 = 265 and r2 = 0.004 for 2-methyl- N-tosylaziridine/EO …

research product

Kontrollierte Polymermikrostruktur in anionischer Polymerisation durch Kompartimentierung

research product

Controlling the Polymer Microstructure in Anionic Polymerization by Compartmentalization.

An ideal random anionic copolymerization is forced to produce gradient structures by physical separation of two monomers in emulsion compartments. One monomer (M) is preferably soluble in the droplets, while the other one (D) prefers the continuous phase of a DMSO-in-cyclohexane emulsion. The living anionic copolymerization of two activated aziridines is thus confined to the DMSO compartments as polymerization occurs selectively in the droplets. Dilution of the continuous phase adjusts the local concentration of monomer D in the droplets and thus the gradient of the resulting copolymer. The copolymerizations in emulsion are monitored by real-time 1 H NMR kinetics, proving a change of the re…

research product