6533b7dafe1ef96bd126d7fa
RESEARCH PRODUCT
Fast Access to Amphiphilic Multiblock Architectures by the Anionic Copolymerization of Aziridines and Ethylene Oxide.
Elisabeth RiegerJan BlankenburgTassilo GleedeFrederik R. WurmKatja Kleinsubject
Ethylene oxide010405 organic chemistryComonomerEpoxideGeneral ChemistryAziridine010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesMiniemulsionchemistry.chemical_compoundColloid and Surface ChemistrychemistryPolymerizationAmphiphilePolymer chemistryCopolymerdescription
An ideal system for stimuli-responsive and amphiphilic (block) polymers would be the copolymerization of aziridines with epoxides. However, to date, no copolymerization of these two highly strained three-membered heterocycles had been achieved. Herein, we report the combination of the living oxy- and azaanionic ring-opening polymerization of ethylene oxide (EO) and sulfonamide-activated aziridines. In a single step, well-defined amphiphilic block copolymers are obtained by a one-pot copolymerization. Real-time 1H NMR spectroscopy revealed the highest difference in reactivity ratios ever reported for an anionic copolymerization (with r1 = 265 and r2 = 0.004 for 2-methyl- N-tosylaziridine/EO and r1 = 151 and r2 = 0.013 for 2-methyl- N-mesylaziridine/EO), leading to the formation of block copolymers with monomodal and moderate molecular weight distributions ( Mw/ Mn mostly ≤1.3). The amphiphilic diblock copolymers were used to stabilize emulsions and to prepare polymeric nanoparticles by miniemulsion polymerization, representing a novel class of nonionic and responsive surfactants. In addition, this unique comonomer reactivity of activated-Az/EO allows fast access to multiblock copolymers, and we prepared the first amphiphilic penta- or tetrablock copolymers containing aziridines in only one or two steps, respectively. These examples render the combination of epoxide and aziridine copolymerizations via a powerful strategy for producing sophisticated macromolecular architectures and nanostructures.
year | journal | country | edition | language |
---|---|---|---|---|
2018-10-08 | Journal of the American Chemical Society |