0000000000349272

AUTHOR

Ilyass Abouelaziz

Reduced Reference Mesh Visual Quality Assessment Based on Convolutional Neural Network

3D meshes are usually affected by various visual distortions during their transmission and geometric processing. In this paper we propose a reduced reference method for mesh visual quality assessment. The method compares features extracted from the distorted mesh and the original one using a convolutional neural network in order to estimate the visual quality score. The perceptual distance between two meshes is computed as the Kullback-Leibler divergence between the two sets of feature vectors. Experimental results from two subjective databases (LIRIS masking database and LIRIS/EPFL general purpose database) and comparisons with seven objective metrics cited in the state-of-the-art demonstr…

research product

Convolutional Neural Network for Blind Mesh Visual Quality Assessment Using 3D Visual Saliency

In this work, we propose a convolutional neural network (CNN) framework to estimate the perceived visual quality of 3D meshes without having access to the reference. The proposed CNN architecture is fed by small patches selected carefully according to their level of saliency. To do so, the visual saliency of the 3D mesh is computed, then we render 2D projections from the 3D mesh and its corresponding 3D saliency map. Afterward, the obtained views are split to obtain 2D small patches that pass through a saliency filter to select the most relevant patches. Experiments are conducted on two MVQ assessment databases, and the results show that the trained CNN achieves good rates in terms of corre…

research product

A Curvature Based Method for Blind Mesh Visual Quality Assessment Using a General Regression Neural Network

International audience; No-reference quality assessment is a challenging issue due to the non-existence of any information related to the reference and the unknown distortion type. The main goal is to design a computational method to objectively predict the human perceived quality of a distorted mesh and deal with the practical situation when the reference is not available. In this work, we design a no reference method that relies on the general regression neural network (GRNN). Our network is trained using the mean curvature which is an important perceptual feature representing the visual aspect of a 3D mesh. Relatively to the human subjective scores, the trained network successfully asses…

research product

No-Reference 3D Mesh Quality Assessment Based on Dihedral Angles Model and Support Vector Regression

International audience; 3D meshes are subject to various visual distortions during their transmission and geometrical processing. Several works have tried to evaluate the visual quality using either full reference or reduced reference approaches. However, these approaches require the presence of the reference mesh which is not available in such practical situations. In this paper, the main contribution lies in the design of a computational method to automatically predict the perceived mesh quality without reference and without knowing beforehand the distortion type. Following the no-reference (NR) quality assessment principle, the proposed method focuses only on the distorted mesh. Specific…

research product

A convolutional neural network framework for blind mesh visual quality assessment

In this paper, we propose a new method for blind mesh visual quality assessment using a deep learning approach. To do this, we first extract visual representative features by computing locally curvature and dihedral angles from each distorted mesh. Then, we determine from these features a set of 2D patches which are learned to a convolutional neural network (CNN). The network consists of two convolutional layers with two max-pooling layers. Then, a multilayer perceptron (MLP) with two fully connected layers is integrated to summarize the learned representation into an output node. With this network structure, feature learning and regression are used to predict the quality score of a given d…

research product

Mesh Visual Quality based on the combination of convolutional neural networks

Blind quality assessment is a challenging issue since the evaluation is done without access to the reference nor any information about the distortion. In this work, we propose an objective blind method for the visual quality assessment of 3D meshes. The method estimates the perceived visual quality using only information from the distorted mesh to feed pre-trained deep convolutional neural networks. The input data is prepared by rendering 2D views from the 3D mesh and the corresponding saliency map. The views are split into small patches of fixed size that are filtered using a saliency threshold. Only the salient patches are selected as input data. After that, three pre-trained deep convolu…

research product

No-reference mesh visual quality assessment via ensemble of convolutional neural networks and compact multi-linear pooling

Abstract Blind or No reference quality evaluation is a challenging issue since it is done without access to the original content. In this work, we propose a method based on deep learning for the mesh visual quality assessment without reference. For a given 3D model, we first compute its mesh saliency. Then, we extract views from the 3D mesh and the corresponding mesh saliency. After that, the views are split into small patches that are filtered using a saliency threshold. Only the salient patches are selected and used as input data. After that, three pre-trained deep convolutional neural networks are employed for feature learning: VGG, AlexNet, and ResNet. Each network is fine-tuned and pro…

research product

A blind mesh visual quality assessment method based on convolutional neural network

International audience

research product

Mesh Visual Quality Assessment Metrics: A Comparison Study

3D graphics technologies have known a developed progress in the last years, and several processing operations can be applied on 3D meshes such as watermarking, compression, simplification and so forth. Mesh visual quality assessment becomes an important issue to evaluate the visual appearance of the 3D shape after specific modifications. Several metrics have been proposed in this context, from the classical distance-based metrics to the perceptual-based metrics which include perceptual information about the human visual system. In this paper, we propose to study the performance of several mesh visual quality metrics. First, the comparison is conducted regardless the distortion types neither…

research product

Reduced reference 3D mesh quality assessment based on statistical models

International audience; During their geometry processing and transmission 3D meshes are subject to various visual processing operations like compression, watermarking, remeshing, noise addition and so forth. In this context it is indispensable to evaluate the quality of the distorted mesh, we talk here about the mesh visual quality (MVQ) assessment. Several works have tried to evaluate the MVQ using simple geometric measures, However this metrics do not correlate well with the subjective score since they fail to reflect the perceived quality. In this paper we propose a new objective metric to evaluate the visual quality between a mesh with a perfect quality called reference mesh and its dis…

research product

Convolutional Neural Network for Blind Mesh Visual Quality Assessment Using 3D Visual Saliency

International audience

research product

Combination Of Handcrafted And Deep Learning-Based Features For 3d Mesh Quality Assessment

We propose in this paper a novel objective method to evaluate the perceived visual quality of 3D meshes. The proposed method in no-reference, it relies only on the distorted mesh for the quality estimation. It is based on a pre-trained convolutional neural network (i.e VGG to extract features from the distorted mesh) and handcrafted features extracted directly from the 3D mesh (i.e curvature and dihedral angle). A General Regression Neural Network (GRNN) is used to learn the statistical parameters of the feature vectors and estimate the quality score. Experimental results from for subjective databases (LIRIS masking, LIRIS/EPFL generalpurpose, UWB compression and LEETA simplification) and c…

research product