6533b821fe1ef96bd127abf0

RESEARCH PRODUCT

Convolutional Neural Network for Blind Mesh Visual Quality Assessment Using 3D Visual Saliency

Ilyass AbouelazizHocine CherifiLongin Jan LateckiAladine ChetouaniMohammed El Hassouni

subject

Computer sciencebusiness.industryQuality assessmentDistortion (optics)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION020207 software engineeringPattern recognition02 engineering and technologyFilter (signal processing)Convolutional neural networkVisualizationSalience (neuroscience)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSaliency mapArtificial intelligencebusinessComputingMethodologies_COMPUTERGRAPHICSVisual saliency

description

In this work, we propose a convolutional neural network (CNN) framework to estimate the perceived visual quality of 3D meshes without having access to the reference. The proposed CNN architecture is fed by small patches selected carefully according to their level of saliency. To do so, the visual saliency of the 3D mesh is computed, then we render 2D projections from the 3D mesh and its corresponding 3D saliency map. Afterward, the obtained views are split to obtain 2D small patches that pass through a saliency filter to select the most relevant patches. Experiments are conducted on two MVQ assessment databases, and the results show that the trained CNN achieves good rates in terms of correlation with human judgment.

https://doi.org/10.1109/icip.2018.8451763