0000000000350400

AUTHOR

Mario Cuoco

showing 11 related works from this author

Independent Geometrical Control of Spin and Charge Resistances in Curved Spintronics

2019

Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can b…

LetterChemistry(all)geometrical controlFOS: Physical sciencesBioengineeringRELAXATIONApplied Physics (physics.app-ph)02 engineering and technologySpin current7. Clean energyelectrical and spin resistanceMaterials Science(all)National Graphene InstituteOn demandMesoscale and Nanoscale Physics (cond-mat.mes-hall)LOGICGeneral Materials ScienceElectronicsPhysicsspintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsbusiness.industryMechanical EngineeringMEMORYnon-local spin valvesPhysics - Applied PhysicsGeneral ChemistrySpintronicsDissipation021001 nanoscience & nanotechnologyCondensed Matter PhysicsTRANSPORTROOM-TEMPERATURENanoelectronicsnonlocal spin valvesMETALResearchInstitutes_Networks_Beacons/national_graphene_institutecurved nanoarchitectures; electrical and spin resistance; geometrical control; nonlocal spin valves; SpintronicsOptoelectronicscurved nanoarchitecturesINJECTION0210 nano-technologybusinessEfficient energy useNano Letters
researchProduct

Spin–orbit coupling effects on the electronic properties of the pressure-induced superconductor CrAs

2019

We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the L\"owdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmet…

SuperconductivityPhysicsCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesGeneral Physics and AstronomyFermi surface02 engineering and technologyElectronSpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesSuperconductivity (cond-mat.supr-con)symbols.namesake0103 physical sciencesHomogeneous spacesymbolsGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physics0210 nano-technologyElectronic band structureHamiltonian (quantum mechanics)Electronic propertiesThe European Physical Journal Special Topics
researchProduct

Spin-orbital polarization of Majorana edge states in oxides nanowires

2020

We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with $d-$orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of orbital Rashba interaction, atomic spin-orbit coupling, and structural distortions. We demonstrate that the resulting electronic structure exhibits an orbital dependent magnetic anisotropy which affects the topological phase diagram and the character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals that the spin-orbital polarization generally occurs along the direction of the applied Zeeeman magnetic field, and transverse to the magnetic and or…

Majorana polarization oxides superconductivityFOS: Physical sciences02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated Electronssymbols.namesake0103 physical sciencesBound stateMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsPhysicsZeeman effectCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Superconductivitysuperconductivity021001 nanoscience & nanotechnologyPolarization (waves)Magnetic fieldMagnetic anisotropyMAJORANAoxidesDensity of statessymbolsAstrophysics::Earth and Planetary Astrophysics0210 nano-technologyMajorana polarizationExcitation
researchProduct

Tuning nodal line semimetals in trilayered systems

2018

We investigate two-dimensional trilayered quantum systems with multi-orbital conduction bands by focusing on the role played by the layer degree of freedom in setting the character of nodal line semimetals. The layer index can label the electronic states where the electrons reside in the unit cell and can enforce symmetry constraints in the electronic structure by protecting bands crossing. We demonstrate that both the atomic spin-orbit coupling and the removal of local orbital degeneracy can lead to different types of electronic transitions with nodal lines that undergo a changeover from a loop structure enclosing the center of the Brillouin zone to pockets winding around multiple high sym…

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsFermi levelGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronElectronic structureInvariant (physics)021001 nanoscience & nanotechnology01 natural sciencesBrillouin zonesymbols.namesakeAtomic electron transition0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physics0210 nano-technologyQuantumEigenvalues and eigenvectors
researchProduct

Driving topological phases by spatially inhomogeneous pairing centers

2017

We investigate the effect of periodic and disordered distributions of pairing centers in a one-dimensional itinerant system to obtain the microscopic conditions required to achieve an end Majorana mode and the topological phase diagram. Remarkably, the topological invariant can be generally expressed in terms of the physical parameters for any pairing center configuration. Such a fundamental relation allows us to unveil hidden local symmetries and to identify trajectories in the parameter space that preserve the non-trivial topological character of the ground state. We identify the phase diagram with topologically non-trivial domains where Majorana modes are completely unaffected by the spa…

PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - SuperconductivityFOS: Physical sciences02 engineering and technologyParameter space021001 nanoscience & nanotechnologyTopology01 natural sciencesSuperconductivity (cond-mat.supr-con)MAJORANACondensed Matter - Strongly Correlated ElectronsPairing0103 physical sciencesHomogeneous spaceInvariant (mathematics)010306 general physics0210 nano-technologyGround statePhase diagramPhysical Review B
researchProduct

Multiple band crossings and Fermi surface topology: Role of double nonsymmorphic symmetries in MnP-type crystal structures

2019

We use relativistic ab-initio methods combined with model Hamiltonian approaches to analyze the normal-phase electronic and structural properties of the recently discovered WP superconductor. Remarkably, the outcomes of such study can be employed to set fundamental connections among WP and the CrAs and MnP superconductors belonging to the same space group. One of the key features of the resulting electronic structure is represented by the occurrence of multiple band crossings along specific high symmetry lines of the Brilloiun zone. In particular, we demonstrate that the eight-fold band degeneracy obtained along the SR path at (kx,ky)=(Pi,Pi) is due to inversion-time reversal invariance and…

SuperconductivityMaterials scienceStrongly Correlated Electrons (cond-mat.str-el)Physics and Astronomy (miscellaneous)Condensed Matter - SuperconductivityDegenerate energy levelsFermi levelFOS: Physical sciencesFermi surface02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologyTopology01 natural sciencesSuperconductivity (cond-mat.supr-con)Brillouin zoneCondensed Matter - Strongly Correlated Electronssymbols.namesake0103 physical sciencessymbolsGeneral Materials Science010306 general physics0210 nano-technologyHamiltonian (quantum mechanics)Fermi Gamma-ray Space TelescopePhysical Review Materials
researchProduct

Evolution of topological superconductivity by orbital-selective confinement in oxide nanowires

2019

We determine the optimal conditions to achieve topological superconducting phases having spin-singlet pairing for a planar nanowire with finite lateral width in the presence of an in-plane external magnetic field. We employ a microscopic description that is based on a three-band electronic model including both the atomic spin-orbit coupling and the inversion asymmetric potential at the interface between oxide band-gap insulators. We consider amplitudes of the pairing gap, spin-orbit interactions and electronic parameters that are directly applicable to nanowires of LaAlO$_3$-SrTiO$_3$. The lateral confinement introduces a splitting of the $d$-orbitals that alters the orbital energy hierarch…

Topological superconductivity oxide 2DEGsTopological superconductivity; oxides; Majorana fermionsTopological superconductivityNanowireMajorana fermionsFOS: Physical sciences02 engineering and technologyElectronPopulation inversionTopology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsAtomic orbital0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsPhase diagramPhysicsSuperconductivityCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Superconductivity021001 nanoscience & nanotechnologySpecific orbital energyPairingoxides0210 nano-technology
researchProduct

Current driven insulator-to-metal transition without Mott breakdown in Ca$_2$RuO$_4$

2023

The electrical control of a material's conductivity is at the heart of modern electronics. Conventionally, this control is achieved by tuning the density of mobile charge carriers. A completely different approach is possible in Mott insulators such as Ca$_2$RuO$_4$, where an insulator-to-metal transition (IMT) can be induced by a weak electric field or current. This phenomenon has numerous potential applications in, e.g., neuromorphic computing. While the driving force of the IMT is poorly understood, it has been thought to be a breakdown of the Mott state. Using in operando angle-resolved photoemission spectroscopy, we show that this is not the case: The current-driven conductive phase ari…

Condensed Matter - Strongly Correlated ElectronsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciences
researchProduct

Anomalous orbital moment in the ferromagnetic phase of the Sr4Ru3O10

2018

The coupling of spin and orbital degrees of freedom in the trilayer Sr4Ru3O10 sets a long-standing puzzle, due to the peculiar anisotropic coexistence of out-of-plane ferromagnetism and in-plane metamagnetism. Recently, the induced magnetic structure by in-plane applied fields has been investigated by means of spin-polarized neutron diffraction, which allowed to extract a substantial orbital component of the magnetic densities at Ru sites. It has been argued that the latter is at the origin of the evident layer dependent magnetic anisotropy, where the inner layers carry larger magnetic moments than the outer ones. We present a spin-polarized neutron diffraction study in order to characteriz…

Condensed Matter - Strongly Correlated ElectronsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct

Engineering Topological Nodal Line Semimetals in Rashba Spin-Orbit Coupled Atomic Chains

2019

We study an atomic chain in the presence of modulated charge potential and modulated Rashba spin-orbit coupling (RSOC) of equal period. We show that for commensurate periodicities $\lambda=4 n$ with integer $n$, the three-dimensional synthetic space obtained by sliding the two phases of the charge potential and RSOC features a topological nodal line semimetal protected by an antiunitary particle-hole symmetry. The location and shape of the nodal lines strongly depend on the relative amplitude between the charge potential and RSOC.

FOS: Physical sciences02 engineering and technologySpace (mathematics)TopologyLambda01 natural sciencessemimetals0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)spin-orbit coupled systems010306 general physicsSpin (physics)Condensed Matter::Quantum GasesCouplingPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsAntiunitary operatorCharge (physics)topological phases021001 nanoscience & nanotechnologyCondensed Matter PhysicsSymmetry (physics)lcsh:QC1-999Electronic Optical and Magnetic MaterialsOrbit (dynamics)Computer Science::Programming LanguagesCondensed Matter::Strongly Correlated Electrons0210 nano-technologylcsh:PhysicsCondensed Matter
researchProduct

Exotic Spin-Orbital Physics in Hybrid Oxides

2016

We compare the effective spin-orbital super\-exchange triggered by magnetic $3d$ impurities with $d^3$ and $d^2$ configurations and either no orbital degree of freedom (orbital dilution) or hole replacing a doublon (charge dilution) in a $4d^4$ Mott insulator with $S=1$ spins. Impurities causing orbital dilution act either as spin defects decoupled from the surrounding ions, or generate orbital polarons along $d^3$-$d^4$ hybrid bonds. The exchange on these bonds determines which orbital is occupied by a doublon on the host site. In case of charge dilution by $3d^2$ impurities additional $\propto T_i^+T_j^+$ terms arise which enhance orbital fluctuations. We show that such terms may radicall…

spin-orbital orderorbital fluctuationsFOS: Physical sciences02 engineering and technologyPolaron01 natural sciencesIonCondensed Matter - Strongly Correlated Electrons0103 physical sciences010306 general physicsSpin (physics)PhysicsCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsSpinsMott insulatorDopingMaterials Science (cond-mat.mtrl-sci)Charge (physics)021001 nanoscience & nanotechnologyCondensed Matter Physicsorbital/charge dilutionElectronic Optical and Magnetic MaterialsDoped Mott insulatorSuperexchangeCondensed Matter::Strongly Correlated ElectronsAstrophysics::Earth and Planetary Astrophysics0210 nano-technologyJournal of Superconductivity and Novel Magnetism
researchProduct