0000000000352891

AUTHOR

Arne Brataas

0000-0003-0867-6323

showing 10 related works from this author

Identifying the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii-Moriya interaction in a ferrimagn…

2020

Electrical manipulation of magnetism via spin-orbit torques (SOTs) promises efficient spintronic devices. In systems comprising magnetic insulators and heavy metals, SOTs have started to be investigated only recently, especially in systems with interfacial Dzyaloshinskii-Moriya interaction (iDMI). Here, we quantitatively study the SOT efficiency and iDMI in a series of gadolinium gallium garnet (GGG) / thulium iron garnet (TmIG) / platinum (Pt) heterostructures with varying TmIG and Pt thicknesses. We find that the non-monotonic SOT efficiency as a function of the magnetic layer thickness is not consistent with the 1/thickness dependence expected from a simple interfacial SOT mechanism. Mor…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsSpintronics530 PhysicsMagnetismEnergy level splittingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGadolinium gallium garnetInsulator (electricity)Heterojunction02 engineering and technologyElectron530 Physik021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryFerrimagnetismMagnet0103 physical sciences010306 general physics0210 nano-technologySpin orbit torquePhysical Review B
researchProduct

Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide.

2018

Spintronics relies on the transport of spins, the intrinsic angular momentum of electrons, as an alternative to the transport of electron charge as in conventional electronics. The long-term goal of spintronics research is to develop spin-based, low-dissipation computing-technology devices. Recently, long-distance transport of a spin current was demonstrated across ferromagnetic insulators1. However, antiferromagnetically ordered materials, the most common class of magnetic materials, have several crucial advantages over ferromagnetic systems for spintronics applications2: antiferromagnets have no net magnetic moment, making them stable and impervious to external fields, and can be operated…

PhysicsMultidisciplinaryMagnetic momentSpinsSpintronicsCondensed matter physics02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciences7. Clean energyMagnetic fieldFerromagnetism0103 physical sciencesSpin Hall effectAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyNature
researchProduct

Phenomenology of current-induced skyrmion motion in antiferromagnets

2016

We study current-driven skyrmion motion in uniaxial thin film antiferromagnets in the presence of the Dzyaloshinskii-Moriya interactions and in an external magnetic field. We phenomenologically include relaxation and current-induced torques due to both spin-orbit coupling and spatially inhomogeneous magnetic textures in the equation for the N\'eel vector of the antiferromagnet. Using the collective coordinate approach we apply the theory to a two-dimensional antiferromagnetic skyrmion and estimate the skyrmion velocity under an applied DC electric current.

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsSkyrmionRelaxation (NMR)General Physics and AstronomyMotion (geometry)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCoupling (physics)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsElectric current010306 general physics0210 nano-technologyPhenomenology (psychology)New Journal of Physics
researchProduct

Propagation Length of Antiferromagnetic Magnons Governed by Domain Configurations.

2019

Spintronics seeks to functionalize antiferromagnetic materials to develop memory and logic devices operating at terahertz speed and robust against external magnetic field perturbations. To be useful, such functionality needs to be developed in thin film devices. The key functionality of long-distance spin-transport has, however, so far only been reported in bulk single crystal antiferromagnets, while in thin films, transport has so far been limited to a few nanometers. In this work, we electrically achieve a long-distance propagation of spin-information in thin films of the insulating antiferromagnet hematite. Through transport and magnetic imaging, we demonstrate a strong correlation betwe…

XMLD-PEEM magnetic imagingMaterials scienceMagnetic domain530 PhysicsTerahertz radiationFOS: Physical sciencesBioengineering02 engineering and technologymagnetic domainsspin transportmagnonsMicrometreCondensed Matter::Materials ScienceAntiferromagnetismGeneral Materials ScienceThin filmControlling collective statesSpin-½Condensed Matter - Materials ScienceCondensed matter physicsSpintronicsMechanical EngineeringMagnonmagnon scatteringAntiferromagnetsMaterials Science (cond-mat.mtrl-sci)General Chemistry530 Physik021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNano Letters
researchProduct

Cross-sublattice Spin Pumping and Magnon Level Attraction in van der Waals Antiferromagnets

2020

We theoretically study spin pumping from a layered van der Waals antiferromagnet in its canted ground state into an adjacent normal metal. We find that the resulting dc spin pumping current bears contributions along all spin directions. Our analysis allows for detecting intra- and cross-sublattice spin-mixing conductances via measuring the two in-plane spin current components. We further show that sublattice symmetry-breaking Gilbert damping can be realized via interface engineering and induces a dissipative coupling between the optical and acoustic magnon modes. This realizes magnon level attraction and exceptional points in the system. Furthermore, the dissipative coupling and cross-subla…

FOS: Physical sciences02 engineering and technology01 natural sciencessymbols.namesake0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Antiferromagnetism010306 general physicsSpin-½CouplingPhysicsCondensed Matter - Materials ScienceSpin pumpingCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMagnonMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter - Other Condensed MatterDissipative systemsymbolsCondensed Matter::Strongly Correlated Electronsvan der Waals force0210 nano-technologyGround stateOther Condensed Matter (cond-mat.other)
researchProduct

Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a Spin-Hall magnetoresistance probe

2019

Antiferromagnets possess a number of intriguing and promising properties for electronic devices, which include a vanishing net magnetic moment and thus insensitivity to large magnetic fields and characteristic terahertz frequency dynamics. However, probing the antiferromagnetic ordering is challenging without synchrotron-based facilities. Here, we determine the material parameters of the insulating iron oxide hematite, α-Fe2O3, using the surface sensitive spin-Hall magnetoresistance (SMR). Combined with a simple analytical model, we extract the antiferromagnetic anisotropies and the bulk Dzyaloshinskii-Moriya field over a wide range of temperatures and magnetic fields. Across the Morin phas…

Phase transitionMaterials scienceMagnetoresistanceQC1-999General Physics and AstronomyFOS: Physical sciencesLarge scale facilities for research with photons neutrons and ionslcsh:Astrophysics02 engineering and technologyPhysics and Astronomy(all)Astrophysics01 natural sciences0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)lcsh:QB460-466Antiferromagnetism010306 general physicsSpin (physics)AnisotropySpin-½Magnetic momentCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics021001 nanoscience & nanotechnologyMagnetic susceptibilitylcsh:QC1-999Magnetic fieldQB460-466Condensed Matter::Strongly Correlated Electrons0210 nano-technologylcsh:Physics
researchProduct

Room temperature antiferromagnetic resonance and inverse spin-Hall voltage in canted antiferromagnets

2021

We study theoretically and experimentally the spin pumping signals induced by the resonance of canted antiferromagnets with Dzyaloshinskii-Moriya interaction and demonstrate that they can generate easily observable inverse spin-Hall voltages. Using a bilayer of hematite/heavy metal as a model system, we measure at room temperature the antiferromagnetic resonance and an associated inverse spin-Hall voltage, as large as in collinear antiferromagnets. As expected for coherent spin pumping, we observe that the sign of the inverse spin-Hall voltage provides direct information about the mode handedness as deduced by comparing hematite, chromium oxide and the ferrimagnet yttrium-iron garnet. Our r…

Spin pumpingMaterials scienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsTerahertz radiation530 PhysicsGeneral Physics and AstronomyResonanceFOS: Physical sciencesObservable530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesCondensed Matter::Materials ScienceFerrimagnetismHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)AntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physicsSpin (physics)
researchProduct

Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-F…

2020

Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through …

Phase transition530 PhysicsScienceDephasingGeneral Physics and Astronomy02 engineering and technology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleMagnetic properties and materialsElectronic and spintronic devices0103 physical sciencesAntiferromagnetism010306 general physicsAnisotropyPhysicsMultidisciplinaryMorin transitionCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnonQ[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]General ChemistrySpintronics021001 nanoscience & nanotechnology530 PhysikFerromagnetismMagnetic dampingCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNature Communications
researchProduct

Theory of domain-wall magnetoresistance in metallic antiferromagnets

2020

We develop a theory to compute the domain-wall magnetoresistance (DWMR) in antiferromagnetic (AFM) metals with different spin structures. In the diffusive transport regime, the DWMR can be either {\it negative} or positive depending on the domain-wall orientation and spin structure. In contrast, when the transport is in the ballistic regime, the DWMR is always positive, and the magnitude depends on the width and orientation of the domain wall. Our results pave the way of using electrical measurements for probing the internal spin structure in antiferromagnetic metals.

Magnetoresistance530 PhysicsFOS: Physical sciences02 engineering and technologySpin structure01 natural sciencesMetal0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)AntiferromagnetismElectrical measurements010306 general physicsSpin-½PhysicsCondensed Matter - Materials ScienceQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology530 PhysikOrientation (vector space)Domain wall (magnetism)visual_artvisual_art.visual_art_mediumCondensed Matter::Strongly Correlated Electrons0210 nano-technologyQuantum Physics (quant-ph)
researchProduct

Data for the article "Long-distance spin-transport across the Morin phase transition up to room temperature in the ultra-low damping alpha-Fe2O3 anti…

2020

Data for experimental magneto-transport and resonance measurements for the article " Long-distance spin-transport across the Morin phase transition up to room temperature in the ultra-low damping α-Fe2O3 antiferromagnet " (https://arxiv.org/abs/2005.14414)

researchProduct