0000000000354176

AUTHOR

Khalil Sdiri

Supplementary material - Details on study area, species, methods and additional results from Ocean acidification affects somatic and otolith growth relationship in fish: evidence from an in situ study

Ocean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies were carried out in laboratory conditions without considering the in situ pCO2/pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO2 levels) can affect can affect somatic and otolith growth, and their relationship in a coastal fish. Somatic and otolith growth rates of juveniles from a population of the ocellated wrasse Symphodus ocellatus living off a Mediterranean CO2 seep, increased at the high-pCO2 site. Also, we detected that slower growing individuals livin…

research product

Ocean acidification affects somatic and otolith growth relationship in fish: Evidence from an in situ study

Ocean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies have been carried out in laboratory conditions without considering the in situ p CO 2 /pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO 2 levels) can affect somatic and otolith growth, and their relationship in a coastal fish. Somatic and otolith growth rates of juveniles of the ocellated wrasse Symphodus ocellatus living off a Mediterranean CO 2 seep increased at the high- p CO 2 site. Also, we detected that slower-growing individuals living at ambient p C…

research product

Ocean acidification does not impair predator recognition but increases juvenile growth in a temperate wrasse off CO2seeps

8 pages, 4 figures, supplementary data https://doi.org/10.1016/j.marenvres.2017.10.013

research product

Effets du bruit marin sur le changement des poissons sparidés juvéniles entre les espèces et les stades de développement

International audience; Marine noise is an emerging pollutant inducing a variety of negative impacts on many animal taxa, including fish. Fish population persistence and dynamics rely on the supply of early life stages, which are often very sensitive to disturbance. Impacts of marine noise pollution (MNP) on juvenile fish have rarely been investigated in temperate regions. This is particularly true for the Mediterranean Sea, which is considered as an MNP hotspot due to intensive maritime traffic. In this study, we investigate the relationship between MNP related to boat traffic and (i) assemblage structure and (ii) the density of juvenile fishes (post-settlers at different stages) belonging…

research product

Seawater carbonate chemistry and somatic and otolith growth relationship of Symphodus ocellatus

Ocean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies have been carried out in laboratory conditions without considering the in situ pCO2/pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO2 levels) can affect somatic and otolith growth, and their relationship in a coastal fish. Somatic and otolith growth rates of juveniles of the ocellated wrasse Symphodus ocellatus living off a Mediterranean CO2 seep increased at the high-pCO2 site. Also, we detected that slower-growing individuals living at ambient pCO2 levels …

research product

Database from Ocean acidification affects somatic and otolith growth relationship in fish: evidence from an in situ study.

Ocean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies were carried out in laboratory conditions without considering the in situ pCO2/pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO2 levels) can affect can affect somatic and otolith growth, and their relationship in a coastal fish. Somatic and otolith growth rates of juveniles from a population of the ocellated wrasse Symphodus ocellatus living off a Mediterranean CO2 seep, increased at the high-pCO2 site. Also, we detected that slower growing individuals livin…

research product