0000000000354292

AUTHOR

Igor V. Grigoriev

showing 7 related works from this author

Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom‐forming fungi

2022

International audience; Summary The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyper-diverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell-wall degrading enzymes (PCWDEs), an expansion of genome size through in…

Transposable elementPhysiology[SDV]Life Sciences [q-bio]Lineage (evolution)russulaceaePlant SciencerussulalesGenomeEvolution MolecularHabitsMycorrhizaeevolutionary transitionSymbiosisSecondary metabolismGeneGenome sizeComputingMilieux_MISCELLANEOUSPhylogenybiology[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]syntenybiology.organism_classificationEvolutionary biologyDNA Transposable Elementssecondary metabolism clusterRussulaceaetransposable elementsAgaricalesectomycorrhizal habitRussulalesNew Phytologist
researchProduct

The Chlamydomonas genome reveals the evolution of key animal and plant functions

2007

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the a…

0106 biological sciencesMESH: Sequence Analysis DNAMESH: Algal ProteinsChloroplastsProteomeMESH: PlantsChlamydomonas reinhardtii01 natural sciencesGenomeMESH: Membrane Transport ProteinsDNA AlgalMESH: DNA AlgalMESH: AnimalsGoniumPhotosynthesisMESH: PhylogenyMESH: PhotosynthesisPhylogenyGenetics0303 health sciencesGenomeMultidisciplinarybiologyMESH: Genomicsfood and beveragesGenomicsPlantsBiological EvolutionMESH: Genes[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]MESH: ProteomeFlagellaMultigene FamilyMESH: Computational BiologyMESH: Chlamydomonas reinhardtiiNuclear geneMolecular Sequence Data[SDV.BC]Life Sciences [q-bio]/Cellular BiologyFlagellumMESH: FlagellaArticle03 medical and health sciencesIntraflagellar transportMESH: EvolutionAnimalsMESH: Genome[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Gene[SDV.BC] Life Sciences [q-bio]/Cellular Biology030304 developmental biologyMESH: Molecular Sequence DataMESH: ChloroplastsAlgal ProteinsChlamydomonasComputational BiologyMembrane Transport ProteinsSequence Analysis DNAbiology.organism_classificationGenesMESH: Multigene FamilyChlamydomonas reinhardtii010606 plant biology & botany
researchProduct

The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants

2011

International audience; Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Sela…

0106 biological sciencesSmall RNASELAGINELLA[SDV.BC]Life Sciences [q-bio]/Cellular Biology01 natural sciencesGenome03 medical and health sciencesSelaginella moellendorffiiSelaginellaGENETIQUE VEGETALEGeneInstitut für Biochemie und Biologie030304 developmental biologyGeneticsWhole genome sequencing0303 health sciencesMultidisciplinarybiologyfungiRNAfood and beverages15. Life on landbiology.organism_classificationSELAGINELLA MOELLENDORFFIIRNA editingLYCOPHYTE010606 plant biology & botany
researchProduct

The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants

2008

We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The …

DNA RepairRetroelementsPhyscomitrellaArabidopsisPhyscomitrella patensGenes PlantGenomeMagnoliopsidaPhylogeneticsGene DuplicationGene familyAnimalsGenePhylogenyPlant ProteinsRepetitive Sequences Nucleic AcidGeneticsWhole genome sequencingMultidisciplinarybiologyDehydrationfood and beveragesComputational BiologyOryzaSequence Analysis DNAbiology.organism_classificationAdaptation PhysiologicalBiological EvolutionBryopsidaMulticellular organismMultigene FamilyChlamydomonas reinhardtiiGenome PlantMetabolic Networks and PathwaysSignal Transduction
researchProduct

Evolutionary priming and transition to the ectomycorrhizal habit in an iconic lineage of mushroom-forming fungi: is preadaptation a requirement?

2021

AbstractThe ectomycorrhizal symbiosis is an essential guild of many forested ecosystems and has a dynamic evolutionary history across kingdom Fungi, having independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic features of the transition to the ectomycorrhizal habit within the Russulaceae, one of the most diverse lineages of ectomycorrhizal fungi. We present comparative analyses of the pangenome and gene repertoires of 21 species across the order Russulales, including a closely related saprotrophic member of Russulaceae. The ectomycorrhizal Russulaceae is inferred to have originated around the Cretaceous-Paleogene extinction event (73.…

food.ingredientfoodSymbiosisbiologyEvolutionary biologyLineage (evolution)Russulaceaebiology.organism_classificationGloeopeniophorellaGenome sizeGenomeRussulalesSynteny
researchProduct

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

2013

International audience; The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but thi…

0106 biological sciencesRhizophagus irregularismutualism[SDV]Life Sciences [q-bio]Molecular Sequence DataFungus01 natural sciencesGenomecarbohydrate-active enzymes; effector; fungal evolution; glomales; mutualismGlomeromycotaEvolution Molecular03 medical and health sciencesSymbiosisMycorrhizaeBotanyGlomeromycotaSymbiosisGenefungal evolution030304 developmental biologyGenomic organizationMucoromycotina0303 health sciencesMultidisciplinarybiology[ SDV ] Life Sciences [q-bio]Base SequencefungiglomalesSequence Analysis DNA15. Life on landPlantsBiological Sciencesbiology.organism_classificationeffectorEvolutionary biologycarbohydrate-active enzymesGenome Fungal010606 plant biology & botany
researchProduct

The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation

2007

The smallest known eukaryotes, at ≈1-μm diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri . This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface character…

0106 biological sciencesGenome evolutionProtein familyGene Transfer Horizontal[SDV]Life Sciences [q-bio]Molecular Sequence DataBiologyEnvironment01 natural sciencesGenomeChromosomesOstreococcus tauriOstreococcus03 medical and health sciencesChlorophyta[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]SelenoproteinsGeneComputingMilieux_MISCELLANEOUS030304 developmental biologyGeneticsCell Nucleus0303 health sciencesMultidisciplinaryMetal metabolismGenomeVitaminsBiological Sciencesbiology.organism_classificationPlanktonAdaptation PhysiologicalBiological EvolutionEukaryotic CellsMetalsHorizontal gene transfer010606 plant biology & botany
researchProduct