0000000000354535

AUTHOR

Nina E. Fatouros

Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids

Symbiotic relationships benefit organisms in utilization of new niches. In parasitoid wasps, symbiotic viruses and venom that are injected together with wasp eggs into the host caterpillar suppress immune responses of the host and enhance parasitoid survival. We found that the virus also has negative effects on offspring survival when placing these interactions in a community context. The virus and venom drive a chain of interactions that includes the herbivore and its food plant and attracts the hyperparasitoid enemies of the parasitoid. Our results shed new light on the importance of symbionts associated with their host in driving ecological interactions and highlight the intricacy of how…

research product

Attraction of Trichogramma Wasps to Butterfly Oviposition-Induced Plant Volatiles Depends on Brassica Species, Wasp Strain and Leaf Necrosis

Within the Brassicaceae, wild as well as crop species are challenged by specialist herbivores including cabbage white butterflies (Pieris spp.). The wild crucifer Brassica nigra responds to oviposition by Pieris butterflies by the synergistic expression of two egg-killing traits. Genotypes that express a hypersensitive response (HR)-like necrosis (direct egg-killing) also emit oviposition-induced plant volatiles (OIPVs) attracting Trichogramma egg parasitoids (indirect egg-killing). This so-called double defense line can result in high butterfly egg mortalities. It remains unknown whether this strategy is unique to B. nigra or more common in Brassica species. To test this, we examined the r…

research product

How to escape from insect egg parasitoids : a review of potential factors explaining parasitoid absence across the Insecta

The egg is the first life stage directly exposed to the environment in oviparous animals, including many vertebrates and most arthropods. Eggs are vulnerable and prone to mortality risks. In arthropods, one of the most common egg mortality factors is attack from parasitoids. Yet, parasitoids that attack the egg stage are absent in more than half of all insect (sub)orders. In this review, we explore possible causes explaining why eggs of some insect taxa are not parasitized. Many insect (sub)orders that are not attacked by egg parasitoids lack herbivorous species, with some notable exceptions. Factors we consider to have led to escape from egg parasitism are parental egg care, rapid egg deve…

research product

Prospects of herbivore egg-killing plant defenses for sustainable crop protection

Abstract Due to a growing demand of food production worldwide, new strategies are suggested to allow for sustainable production of food with minimal effects on natural resources. A promising alternative to the application of chemical pesticides is the implementation of crops resistant to insect pests. Plants produce compounds that are harmful to a wide range of attackers, including insect pests; thus, exploitation of their natural defense system can be the key for the development of pest‐resistant crops. Interestingly, some plants possess a unique first line of defense that eliminates the enemy before it becomes destructive: egg‐killing. Insect eggs can trigger (1) direct defenses, mostly i…

research product

Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host

The insect's microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we com…

research product

Next-generation biological control

Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Nex…

research product

Volatile-mediated foraging behaviour of three parasitoid species under conditions of dual insect herbivore attack

Infochemicals play an important role in structuring intra-and interspecific interactions. Many parasitoid wasp species rely on herbivory or oviposition-induced plant volatiles (HIPVs/OIPVs) to locate their herbivorous hosts, and must cope with variation in the volatile blends due to factors such as plant/host species, herbivore density or attack by several herbivores. However, little is known about how dual herbivory or changes in herbivore density affect multiple parasitoid species, each attacking a different herbivore, in the same system. In a natural system, we investigated the effect of dual attack on the ability of three parasitoid species to differentiate between volatiles induced by …

research product

Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context

In response to insect herbivory, plants emit volatile organic compounds which may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. In nature, plants are often attacked by multiple herbivores, but the majority of studies which have investigated indirect plant defenses to date have focused on the recruitment of different parasitoid species in a single-herbivore context. Here, we report our investigation on the attraction of egg parasitoids of lepidopteran hosts (Trichogramma brassicae and T. evanescens) toward plant volatiles induced by different insect herbivores in olfactometer bioassays. We used a system consisting of a native crucifer, Brassica nigr…

research product