0000000000354785

AUTHOR

Anna Lozano-ureña

0000-0001-8814-7514

showing 6 related works from this author

Genomic Imprinting and the Regulation of Postnatal Neurogenesis

2017

Most genes required for mammalian development are expressed from both maternally and paternally inherited chromosomal homologues. However, there are a small number of genes known as “imprinted genes” that only express a single allele from one parent, which is repressed on the gene from the other parent. Imprinted genes are dependent on epigenetic mechanisms such as DNA methylation and post-translational modifications of the DNA-associated histone proteins to establish and maintain their parental identity. In the brain, multiple transcripts have been identified which show parental origin-specific expression biases. However, the mechanistic relationship with canonical imprinting is unknown. R…

0301 basic medicineGeneticsReviewBiologyGene dosage03 medical and health sciences030104 developmental biology0302 clinical medicineHistoneDNA methylationbiology.proteinGeneral Earth and Planetary SciencesEpigeneticsImprinting (psychology)AlleleGenomic imprintingGene030217 neurology & neurosurgeryGeneral Environmental ScienceBrain Plasticity
researchProduct

Dlk1 dosage regulates hippocampal neurogenesis and cognition

2021

Significance Generation of new neurons occurs normally in the adult brain in two locations: the subventricular zone (SVZ) in the walls of the lateral ventricles and the subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus. Neurogenesis in the adult hippocampus has been implicated in cognitive functions such as learning, memory, and recovery of stress response. Imprinted genes are highly prevalent in the brain and have adult and developmental important functions. Genetic deletion of the imprinted gene Dlk1 from either parental allele shows that DLK1 is a key mediator of quiescence in adult hippocampal NSCs. Additionally, Dlk1 is exquisitely dosage sensitive in the brain with p…

0301 basic medicinehippocampusHippocampusgene dosageBiologySubgranular zone03 medical and health sciencesMice0302 clinical medicineCognitionNeuroplasticitymedicineAnimalsEpigeneticsImprinting (psychology)AllelesMultidisciplinarybehaviorDentate gyrusNeurogenesisCalcium-Binding Proteinsneurogenesis genomic imprinting behavior gene dosage hippocampus424Biological Sciencesgenomic imprintingneurogenesis030104 developmental biologymedicine.anatomical_structurenervous systemGenomic imprintingNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

Genomic imprinting and neurodevelopment

2021

Abstract During mammalian development, most genes are equally expressed from both the maternal and the paternal alleles. However, a minority of genes known as “imprinted genes’” are expressed or silenced from either the maternal or the paternal homologue, resulting functionally monoallelic. This process known as “genomic imprinting” is essential for normal development and shows tissue and developmental-stage specificity, suggesting a key role in gene dosage fine-tuning. Furthermore, genomic imprinting is highly prevalent in the brain, and many genes with a key role in pre- and postnatal neurodevelopment are expressed in a parent-of-origin specific manner in the central nervous system. This …

Geneticsmedicine.anatomical_structureCentral nervous systemmedicineBiologyAlleleGenomic imprintingGeneImprinting (organizational theory)Gene dosage
researchProduct

Aberrations of Genomic Imprinting in Glioblastoma Formation

2021

In human glioblastoma (GBM), the presence of a small population of cells with stem cell characteristics, the glioma stem cells (GSCs), has been described. These cells have GBM potential and are responsible for the origin of the tumors. However, whether GSCs originate from normal neural stem cells (NSCs) as a consequence of genetic and epigenetic changes and/or dedifferentiation from somatic cells remains to be investigated. Genomic imprinting is an epigenetic marking process that causes genes to be expressed depending on their parental origin. The dysregulation of the imprinting pattern or the loss of genomic imprinting (LOI) have been described in different tumors including GBM, being one …

Cancer ResearchGenomic imprintingSomatic cellSubventricular zonePopulationReviewBiologylcsh:RC254-282MethylationGliomamedicineEpigeneticsImprinting (psychology)educationneural stem cellsNeural stem cellseducation.field_of_studyglioblastomasubventricular zonelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseNeural stem cellgenomic imprintingnervous system diseasesOncologyCancer researchmethylationStem cellGenomic imprintingGlioblastoma
researchProduct

Beyond protein-coding genes

2019

A long non-coding RNA called lnc-NR2F1 regulates several neuronal genes, including some involved in autism and intellectual disabilities.

0301 basic medicineMouseQH301-705.5ScienceautismGenomicsmacromolecular substancesComputational biologyBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineIntellectual Disabilitymental disordersgenomicsneuronal developmentmedicineAnimalsHumansAutistic DisorderBiology (General)GeneNeuronsProtein codingRegulation of gene expressionCOUP Transcription Factor Ilong non-coding RNAGeneral Immunology and MicrobiologyGeneral NeuroscienceQRProteinsRNAGenetics and GenomicsGeneral Medicinemedicine.diseaseLong non-coding RNA030104 developmental biologynervous systemNeurodevelopmental DisordersMedicineAutismRNA Long Noncodingintellectual disabilitiesInsightgene regulation030217 neurology & neurosurgeryHumaneLife
researchProduct

TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn.

2019

Ten-eleven-translocation (TET) proteins catalyze DNA hydroxylation, playing an important role in demethylation of DNA in mammals. Remarkably, although hydroxymethylation levels are high in the mouse brain, the potential role of TET proteins in adult neurogenesis is unknown. We show here that a non-catalytic action of TET3 is essentially required for the maintenance of the neural stem cell (NSC) pool in the adult subventricular zone (SVZ) niche by preventing premature differentiation of NSCs into non-neurogenic astrocytes. This occurs through direct binding of TET3 to the paternal transcribed allele of the imprinted gene Small nuclear ribonucleoprotein-associated polypeptide N (Snrpn), contr…

0301 basic medicineScienceCellular differentiationGeneral Physics and AstronomySubventricular zone02 engineering and technologyBiologyDNA-binding proteinArticleGeneral Biochemistry Genetics and Molecular BiologyCatalysissnRNP Core ProteinsDioxygenases03 medical and health sciencesMiceNeural Stem CellsLateral VentriclesProto-Oncogene ProteinsmedicineAnimalsRNA Small Interferinglcsh:SciencePsychological repressionreproductive and urinary physiologyMultidisciplinarySnRNP Core ProteinsQNeurogenesisBrainCell DifferentiationGeneral Chemistry021001 nanoscience & nanotechnologyNeural stem cellnervous system diseasesCell biologyDNA-Binding Proteins030104 developmental biologymedicine.anatomical_structurenervous systemAstrocyteslcsh:Qbiological phenomena cell phenomena and immunity0210 nano-technologyGenomic imprintingSignal Transduction
researchProduct