0000000000357080

AUTHOR

M. S. Boucenna

showing 3 related works from this author

Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model

2011

A recent study of gamma-ray data from the Galactic Center motivates the investigation of light (~7-10 GeV) particle dark matter models featuring tau lepton pairs as dominant annihilation final state. The Lepton-Specific two-Higgs-doublet Model (2HDM-L) provides a natural framework where light, singlet scalar dark matter can pair-annihilate dominantly into tau leptons. We calculate the nucleon-dark matter cross section for singlet scalar dark matter within the 2HDM-L framework, and compare with recent results from direct detection experiments. We study how direct dark matter searches can be used to constrain the dark matter interpretation of gamma ray observations, for different dominant ann…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaDark matterScalar field dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesNuclear physicsTwo-Higgs-doublet modelHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsLight dark matterHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHot dark matterHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyWeakly interacting massive particlesAstrophysics - High Energy Astrophysical PhenomenaDark fluidAstrophysics - Cosmology and Nongalactic AstrophysicsLeptonPhysical Review D
researchProduct

Phenomenology of dark matter from A(4) flavor symmetry

2011

We investigate a model in which Dark Matter is stabilized by means of a Z2 parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino mixing. In our A4 example the standard model is extended by three extra Higgs doublets and the Z2 parity emerges as a remnant of the spontaneous breaking of A4 after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter s…

PhysicsNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsDark matterElectroweak interactionHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaParity (physics)Parameter space01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHiggs bosonHigh Energy Physics::ExperimentSymmetry breakingNeutrino010306 general physicsPhenomenology (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Predictive discrete dark matter model and neutrino oscillations

2012

Dark Matter stability can be achieved through a partial breaking of a flavor symmetry. In this framework we propose a type-II seesaw model where left-handed matter transforms nontrivially under the flavor group Delta(54), providing correlations between neutrino oscillation parameters, consistent with the recent Daya-Bay and RENO reactor angle measurements, as well as lower bounds for neutrinoless double beta decay. The dark matter phenomenology is provided by a Higgs-portal.

Left handedPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDark matterScalar field dark matterFísica01 natural sciencesSeesaw molecular geometryDouble beta decay0103 physical sciencesHiggs bosonHigh Energy Physics::Experiment010306 general physicsNeutrino oscillationPhenomenology (particle physics)Physical Review D
researchProduct